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Abstract 

The problem of outliers is well-known in statistics: an outlier is a value that is far from the 

general distribution of the other observed values, and can often perturb the results of a statistical 

analysis.   Various procedures exist for identifying outliers, in case they need to receive special 

treatment, which in some cases can be exclusion from consideration.  An inlier, by contrast, is an 

observation lying within the general distribution of other observed values, generally does not 

perturb the results but is nevertheless non-conforming and unusual.  For single variables, an 

inlier is practically impossible to identify, but in the multivariate case, thanks to 

interrelationships between variables, values can be identified that are observed to be more central 

in a distribution but would be expected, based on the other information in the data matrix, to be 

more outlying.  We propose an approach to identify inliers in a data matrix, based on the singular 

value decomposition.  An application is presented using a table of economic indicators for the 27 

member countries of the European Union in 2011, where inlying values are identified for some 

countries such as Estonia and Luxembourg. 
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1. Introduction 

An outlier on a single variable is an observed value that is unusually far from the general 

distribution of the other values.  A multivariate outlier is an observation vector on several 

variables that is far away from the other multivariate observations, in terms of the measure of 

distance in the multivariate space.  Various approaches to the identification of univariate and 

multivariate outliers exist in the statistical literature: see, for example, Rousseeuw and van 

Someren (1990), Peña and Prieto (2001), Filzmoser (2005). 

By contrast, an inlier is an observation that is unusually within the distribution of the other 

values, when it is expected to be more extreme.  Clearly, for a single variable in isolation, the 

identification of an inlier is practically impossible.  But for multivariate data, thanks to the 

relationships between variables, inliers can be identified.  For example, while it is common that 

the value of a single variable be close to its mean, it is unusual that the values of all variables for 

a single observation vector be close to their respective means.  Such inliers may indicate 

fabricated data, since the perpetrator of fraudulent data might create data equal or approximately 

equal to the means of subgroups in the data, since they would tend to go unnoticed, and not 

perturb the final analysis while increasing the sample size.  Such cases have been detected in 

clinical trials and other biomedical experiments (Evans, 1996; Buys et al, 1999).  The approach 

to identifying such inliers has been to compute Mahalanobis distances, either regular or robust 

versions, between the observation vectors and various subgroup means, to see if they are 

unusually close.  A similar idea is found in assessing model fit: while attention is usually placed 

on deciding whether a model does not fit by looking at the right tail of the chi-square 

distribution, for example, it is equally unlikely that the fit statistic lies in the left tail, very close 

to the null hypothesis of perfect fit.  Having a p-value for a chi-square goodness-of-fit test as 

high as 0.99 could indicate that the data have been fabricated, since the fit is “too good to be 

true” – see, for example, the controversial criticism by R.A. Fisher of the results of Mendel’s 

breeding experiments: Fisher (1936), also Edwards (1986). 

The term “multivariate inlier” is also used in prediction in a multivariate context. With more and 

more variables the multidimensional space of the data expands and there can be huge “holes” 

where no data exist, making prediction for an “inlier” in this part of the space difficult, for 

example by methods such as nearest neighbours – see the chemometric literature, where 

spectrometry, chromatography and image analysis are used to infer chemical concentrations, a 

methodology called multivariate calibration (Martens and Næs, 1989). 
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As a last sense of the term, “inliers” sometimes indicate all observations that are not 

outliers, when there is a large proportion of outliers in a data set – see, for example, 

Zhang and Košecká (2003).  

We offer the following definition of an inlier, slightly adapted from the definition in a UN 

publication (UNECE, 2000): 

An inlier is a data observation that lies in the interior of a data set and is unusual or in 

error. Because inliers are difficult to distinguish from the other data values, they are 

sometimes difficult to find and – if they are in error – to correct. 

(The principal difference in our definition is the phrase “is unusual or in error”, whereas 

the UNECE definition referred to above simply says “in error” – we thus believe that 

inliers are not necessarily in error).   

In this paper we consider the specific problem of inlying values (not whole observation vectors 

of values) in a table of data – these are values on particular variables that are unusually interior 

to the distributions of those respective variables.  In order to identify such values we make a 

prediction of what they are expected to be given all the other values in the data table.  If a data 

value is predicted to be outlying whereas its observed value is close to the mean, then this is an 

inlying value, and is unusual for that fact.  In other words, we can say that by predicting outliers 

we are able to identify observed inliers.  In most cases these are not errors in the data, although 

this approach could alert to possible erroneous values.   

 

2. Imputation using the singular value decomposition 

For a given data matrix Y of data, with the n rows representing sampling units and the m 

columns the variables, we want to capitalize on the relationships between the variables in order 

to predict what a particular value yij is expected to be, given all the other data in the matrix.  One 

possibility would be to perform a regression analysis of the j-th variable on the other variables 

and use the value predicted by the regression.  However, this approach treats the whole j-th 

column as a response vector, whereas it is just the (i,j)-th value that is to be predicted, with the 

remaining values in the j-th column (those apart from the i-th one) to be also considered as 

predictors.  Fortunately, an imputation algorithm using the singular value decomposition (SVD) 

is just what we need here, since it uses all the data in the matrix, apart from the (i,j)-th value of 

interest, to predict that value.   
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The SVD* is a matrix decomposition theorem which expresses a rectangular matrix B as the 

product of three matrices of simple structure, an orthornormal matrix U, a diagonal matrix D of 

positive numbers in descending order, and the transpose of an orthonormal matrix V: 

           B = UDVT , where UTU = VTV = I  1  2 ···> 0         (1) 

An alternative expression of the SVD is as a weighted combination of rank 1 matrices formed by 

the p columns of U and V, with the weights being the singular values 1, 2 , ···, p  (p is the 

rank of S): 

                 (2) 

The usefulness of the SVD is that if one retains the first k terms, say, of (2) then the resultant 

matrix is a rank k least-squares approximation of S, for example for k = 2: 

                 (3) 

Deciding on the number of dimensions k to use in the approximation can be based on various 

criteria such as the scree plot and a permutation test adapted to the particular data set, to be 

described in the applications of Section 3.  

In order to assess whether any data element of S is unusual, either outlying or inlying, each 

element can be regarded as missing in turn, and its value can be imputed using a missing value 

algorithm based on the approximation (3) reminiscent of an expectation-minimization (EM) 

procedure: 

1. Consider the (i,j)-th element sij as missing. 

2. Insert a reasonable first approximation of sij into S, call this matrix with this one element 

changed S*. 

3. Perform the SVD of S*. 

4. Estimate sij from the approximation as in (3), where k terms of the SVD are included. 

5. Insert the new value of sij into S* and repeat from step 4 until convergence is achieved. 

The above steps are repeated for each element of the matrix S, so that finally we have an 

estimation of the whole matrix, each element having been estimated from all the other elements.  

Then these estimates are compared with the originally observed values, and the elements for 

                                                      
* Greenacre and Stephens (2011) give a musical explanation of the SVD, one of the most useful results in matrix 
algebra, and one of the fundamental tools of machine learning – see, for example, Hastie, Tibshirani and Friedman 
(2009). 
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which these are the most different are classified as possible inlying or outlying values.  An 

outlier will be a value for which the observed value is far from the mean, for example, whereas 

the estimated value lies much closer to the mean.  An inlier will be a value for which the 

observed value is quite central in the distribution of that variable, while the estimated value by 

our procedure is far from the mean. 

 

3. Application 

Table 1 consists of six economic indicators for the 27 European Union countries for 2011, 

gleaned from the Eurostat web site (Eurostat, 2011).   

 

Table 1   

Six economic indicators for the 27 European Union countries in 20111.  CPI=consumer price 
index (index, =100 in 2005), UNE=unemployment rate in 15–64 age group (percentage), 
INP=industrial production (index, =100 in 2005), BOP=balance of payments (€ /capita2), 
PRC=private final consumption expenditure (€ /capita2), UN%=annual change in unemployment 
rate (percentage points). 
 

       

CPI UNE INP BOP PRC UN%
Belgium BE 116.03 4.77 125.59 908.6 6716.5 -1.6
Bulgaria BG 141.20 7.31 102.39 27.8 1094.7 3.5

CzechRep. CZ 116.20 4.88 119.01 -277.9 2616.4 -0.6
Denmark DK 114.20 6.03 88.20 1156.4 7992.4 0.5
Germany DE 111.60 4.63 111.30 499.4 6774.6 -1.3

Estonia EE 135.08 9.71 111.50 153.4 2194.1 -7.7
Ireland IE 106.80 10.20 111.20 -166.5 6525.1 2.0
Greece EL 122.83 11.30 78.22 -764.1 5620.1 6.4

Spain ES 116.97 15.79 83.44 -280.8 4955.8 0.7
France FR 111.55 6.77 92.60 -337.1 6828.5 -0.9

Italy IT 115.00 5.05 87.80 -366.2 5996.6 -0.5
Cyprus CY 116.44 5.14 86.91 -1090.6 5310.3 -0.4
Latvia LV 144.47 12.11 110.39 42.3 1968.3 -3.6

Lithuania LT 135.08 11.47 114.50 -77.4 2130.6 -4.3
Luxembourg LU 118.19 3.14 85.51 2016.5 10051.6 -3.0

Hungary HU 134.66 6.77 115.10 156.2 1954.8 -0.1
Malta MT 117.65 4.15 101.65 359.4 3378.3 -0.6

Netherlands NL 111.17 3.23 103.80 1156.6 6046.0 -0.4
Austria AT 114.10 2.99 116.80 87.8 7045.5 -1.5
Poland PL 119.90 6.28 146.70 -74.8 2124.2 -1.0

Portugal PT 113.06 9.68 89.30 -613.4 4073.6 0.8
Romania RO 142.34 4.76 131.80 -128.7 1302.2 3.2
Slovenia SI 118.33 5.56 105.40 39.4 3528.3 1.8
Slovakia SK 117.17 9.19 156.30 16.0 2515.3 -2.1
Finland FI 114.60 5.92 101.00 -503.7 7198.8 -1.3
Sweden SE 112.71 6.10 100.50 1079.1 7476.7 -2.3

U.K. UK 120.90 6.11 90.36 -24.3 6843.9 -0.8  
1 CPI November 2011, UNE June 2011, INP September 2011, BOP second 

quarter 2011, PRC first quarter 2011, UN% second quarter 2011 compared to 
second quarter 2010 

2 Per capita computed with respect to population in 15–64 age group 
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Each country is thus defined by a six-dimensional vector of values.  It is easy to see from simple 

boxplots of the six variables in Figure 1, compared to Table 1, that there are several outliers in 

inflation rates (CPI) for the recent eastern-European countries entering the EU, that Luxembourg 

is an outlier in balance of payments (BOP) and that Greece an outlier in increase in 

unemployment rate (UN%).  However, there also several inlying values not obvious from the 

univariate analyses, as we shall soon see. 

Figure 1 

Boxplots of the six variables of Table 1. 

 

 

 

 

 

 

 

 

 

Performing a principal component analysis (PCA) biplot (Gabriel, 1971; Greenacre 2010) on the 

standardized data shows the inherent multivariate structure of the data (Figure 2), for example 

that unemployment rate is negatively correlated with balance of payments (UNE and BOP point 

in opposite directions), also that inflation rate (CPI) is negatively correlated with private 

consumption (PRC).  A percentage of 63.3% of the variance of the six variables is explained by 

this two-dimensional biplot.  These two dimensions are the only ones worth interpreting 

according to several rules of thumb used to decide on the dimensionality of biplots.  For 

example, the first two dimensions are the only two to have variances greater than 1, and the scree 

plot, shown in Figure 2, also shows these two dimensions well separated from the other four.  

Furthermore, a permutation test gives the following p-values for the first two dimensions: p = 

0.006 and p = 0.037 respectively, while for all the other dimensions the p-value is above 0.9.  

The permutation test is achieved by randomly permuting the values in each column of the 

matrix, then performing a PCA and recording the eigenvalues.  This is repeated 9999 times to  
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Figure 2   

PCA biplot of standardized data in Table 1. The percentage of inertia explained is 63.3%. The 
scree plot of the eigenvalues is shown alongside. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

generate a permutation distribution of the eigenvalues under the null hypothesis of no 

relationship between the indicators – see Greenacre (2010) for further details of this permutation 

test.  Our conclusion is to consider the relationships in the data to be inherently two-dimensional, 

and the remaining variance to be random variation, hence our use of the two-dimensional SVD 

approximation to impute the data values. 

After the imputation exercise described in Section 2 was performed on each of the 27  6 = 162 

values in the table, the distribution of observed minus imputed values is shown in Figure 3.  The 

distribution is close to normal, with standard deviation sd = 1.04, and there are 9 of the 162 

values (i.e., 5.6%) in the table beyond the limits 2sd, listed in Table 2.   Estonia is prominent in 

this list, having both an outlier and an inlier.  From its other indicators one would expect hardly 

any decrease in unemployment, but the decrease has been 7.70 percentage points, hence an 

outlier.  On the other hand, its industrial production is imputed as much higher than the actual 

index value of 111.5, hence an inlier.  The other inliers are Slovakia, with a near-average CPI but 

expected to be much higher, and Romania, with a less than average unemployment rate but 

expected to be much higher (similarly, Romania’s change in unemployment rate is imputed as  

–4.8 percentage points, but it actually increased by 3.2 percentage points).  Luxembourg has an 
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expected CPI of 91.8 based on its other indicators, a deflation that is clearly unrealistic, but this 

signals the excellent indicators enjoyed by Luxembourg.  Finally, an outlier worth noting is 

Spain, for which one would expect an unemployment rate of only7.4%, but in reality it is 15.8%, 

the highest in this data set for 2011.  

Figure 3   

Histogram of observed minus imputed values, for the 276 = 162 cells in Table 1.  

 

 

 

 

 

 

 

 

 

 

Table 2   

Values beyond the limits 2sd in Figure 3, followed by their original values (standardized form 
just before in parentheses) and imputed values (standardized form also just before).  The 
observations in boldface red can be considered inliers, because their values are imputed to be far 
from the variable mean, yet their observed values are more central.  Observations in blue are the 
opposite: their observed values are extreme whereas one would expect their values to be more 
central. 

 Value    (stand.) Orig. value       (stand.) Imput. value     Country, variable 
          ________________________________________________________________________________________ 

 –2.79   (–2.63)      –7.70        (–0.16)      –0.13   Estonia, UN%  
–2.64     (0.28)    111.50          (2.92)    161.38   Estonia, INP  
–2.33   (–1.09)      85.51          (1.24)    129.63   Luxembourg, INP 
–2.26   (–0.33)     117.2                 (1.92)      141.0    Slovakia, CPI  
–2.19   (–0.71)       4.76          (1.48)      11.67   Romania, UNE  

 2.34     (2.65)     156.3                 (0.31)      112.1    Slovakia, INP 
 2.49   (–0.24)     118.2               (–2.73)        91.8    Luxembourg, CPI 
 2.66     (2.79)       15.8                 (0.13)          7.4    Spain, UNE 
            2.97     (1.38)       3.20               (–1.59)      –4.81    Romania, UN% 
          ________________________________________________________________________________________ 
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This approach can be used to detect errors in the data.  For example, suppose that Spain’s annual 

increase in unemployment, which is 0.7 percentage points, was inaccurately recorded as -0.7.  

This change is enough to identify this value as unusual after imputation, because the imputed 

value is 6.2.  The previous observed minus imputed difference of 5.5 was not in the region 

outside 2sd but the difference of 6.9 would be. 

 

4. Discussion and conclusion 

We have considered the identification of inliers in a multivariate data set.  Rather than 

identifying inlying observation vectors, we have concentrated on identifying inlying values in a 

data table.  This is in parallel to the frequent practice of identifying unusual outlying values in a 

data table, which might overly affect statistical estimates such as correlations or regression 

coefficients, and which then necessitate alternative estimation procedures such as nonparametric 

or robust methods.  Inlying values, which are hidden in the data and generally do not affect 

estimates measurably, are unusual in the opposite sense: one would expect them to be more 

extreme. We have proposed a simple, yet effective, method for identifying inlying values, based 

on the matrix approximation property of the singular value decomposition.  Inlying data that are 

correctly measured can not be modified or dispelled – it is their identification and interpretation 

that is interesting.  But the identification of inliers can sometimes signal an incorrect 

measurement, and thus be useful for improving data quality. 
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