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Abstract:  We construct a weighted Euclidean distance that approximates any distance or 

dissimilarity measure between individuals that is based on a rectangular cases-by-variables 

data matrix.  In contrast to regular multidimensional scaling methods for dissimilarity data, the 

method leads to biplots of individuals and variables while preserving all the good properties of 

dimension-reduction methods that are based on the singular-value decomposition.  The main 

benefits are the decomposition of variance into components along principal axes, which provide 

the numerical diagnostics known as contributions, and the estimation of nonnegative weights for 

each variable.  The idea is inspired by the distance functions used in correspondence analysis 

and in principal component analysis of standardized data, where the normalizations inherent in 

the distances can be considered as differential weighting of the variables.  In weighted 

Euclidean biplots we allow these weights to be unknown parameters, which are estimated from 

the data to maximize the fit to the chosen distances or dissimilarities.  These weights are 

estimated using a majorization algorithm.  Once this extra weight-estimation step is 

accomplished, the procedure follows the classical path in decomposing the matrix and 

displaying its rows and columns in biplots. 
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1.  Introduction 
 

We are concerned here with biplots of rectangular data matrices (Gabriel 1971, Gower and Hand 

1996, Greenacre 2010, Gower, Lubbe and Le Roux 2011).  A biplot is a graphical representation 

of the rows (usually cases) and columns (usually variables) of a matrix, where typically a 

distance approximation is achieved with respect to the cases, depicted by points, while the 

variables are represented by arrows defining biplot axes onto which cases are projected, yielding 

approximations of the original data values.   In standard applications of the biplot, a Euclidean 

distance is assumed between the cases, usually incorporating some form of pre-standardization 

of the variables.  This biplot, which we could call the “regular biplot”, is easy to understand and 

to interpret, is an optimal least-squares representation of the data in a low-dimensional space and 

has convenient properties such as the decomposition of the total variance of the matrix into 

contributions by all the elements of the matrix along each dimension of the solution and thus by 

each row and each column as well. 

Our particular interest here is in a more general class of distance or dissimilarity measures 

defined on the cases, which does not fit into the regular biplot approach.   At present there are 

two approaches, one linear and the other nonlinear, to deal with this situation where proximities 

between cases are preferred to be defined in a non-standard way.  Both are two-step approaches 

where an initial configuration of the cases is obtained by multidimensional scaling, or some other 

nonlinear mapping, of the proximity matrix, and the second step is conditional on the first one.  

The linear approach imitates the regular biplot by simply adding the variables as vectors to this 

configuration, using as coordinates the estimated coefficients of a linear regression of each 

variable on the dimensions of the configuration (see, for example, Groenen and Borg 2005: 

Chapter 4; Greenacre 2010: Chapter 4).  The more complicated nonlinear approach adds curved 

trajectories by circle projection or using differentials to achieve so-called nonlinear biplots 

(Gower and Hand 1996, Gower et al. 2011).   We propose a simple but elegant alternative 
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approach, which stays within the regular biplot framework, while allowing any proximity 

measure to be used between the cases.  This is achieved by estimating weights for the variables 

and using a weighted Euclidean distance function between the cases, an idea inspired by the 

normalization commonly used in principal component analysis and correspondence analysis.   

We thus call this approach a weighted Euclidean biplot. 

In principal component analysis (PCA) of a cases-by-variables data matrix X, where variables 

are standardized, the distances between rows are given by standardized Euclidean distances 

according to the following definition in squared distance form: 

                             (1) 222 /)()()(),(2
kjkikjijiji sxxd

k
s    xxDxxxx T

where xi and xj are vectors denoting the i-th and j-th rows of X and Ds is the diagonal matrix of 

standard deviations  sk .  The standardizing factors  can be considered as squared weights 

assigned to the respective variables in the calculation of the distances between rows.  Similarly, 

in correspondence analysis (CA) of a table of frequencies, the inherent chi-square distance has 

the same form, but the (squared) weights are proportional to the inverses of the corresponding 

margins of the table (see, for example, Greenacre 2007). 

2/1 ks

These distance functions can be subsumed in the general case of a weighted Euclidean (squared) 

distance:  

                                                 (2)  
k

jkikkjijiji xxwd w
22 )()()(),(2 xxDxxxx T

where Dw is a diagonal matrix of squared weights , k =1,…,p, for the p variables, serving to 

balance out, in some sense, the contributions of the variables to the distances between cases.  

2
kw

In several areas of research, the practitioner is more interested in distance measures which are 

not of the above form and often non-Euclidean, for example the Bray-Curtis dissimilarity 
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measure in ecology – see Gower and Legendre (1986) and Legendre and Legendre (1998) for a 

repertory of such distances.   

The present paper aims to approximate the distances or dissimilarities chosen by the user, 

whatever their definition, by a weighted Euclidean distance of the form (2).  Weights will be 

estimated for the variables, and these weights can then be interpreted as those that are inherently 

assigned to the variables by the chosen distance function.   We can then follow the regular biplot 

approach using weighted least-squares approximation of the matrix, which has the following 

advantages:  

1. The framework of the singular value decomposition, visualizing the cases (rows) and 

variables (columns) in a joint plot, with a straightforward interpretation in terms of 

distances and scalar products; 

2. The convenient breakdown of variance across principal axes of both the rows and 

columns, which provides useful numerical diagnostics in the interpretation and 

evaluation of the results.   

In Section 2 we shall summarize the classical biplot framework with weights on the variables.  

Then in Section 3 we describe an algorithmic approach to estimate the weights, with specific 

details given in Appendix 1.  In Section 4 we give an example of this approach and conclude 

with a discussion in Section 5. 

2.  Weighted Euclidean biplots 
 

Our main interest is in weighting the variables in the definition of distances between the 

individuals, or cases, usually the rows of the data matrix.  Since cases themselves can also be 

weighted to differentiate their influence on the solution, which serves a different purpose, we 

shall use the terms mass for a case weight and weight for a variable weight.  Notice that in 
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correspondence analysis the term “mass” is used for both rows and columns, where they play the 

dual roles of masses and weights in the present sense.   

Suppose that we have a data matrix Y (nm), usually pre-centered with respect to rows or 

columns or both.  Let Dr (nn) and Dw (mm) be diagonal matrices of row (case) masses and 

column (variable) weights respectively.  The masses and weights are all non-nonegative and, 

without loss of generality, the row masses have a sum of 1.  The rows of Y are presumed to be 

points in an m-dimensional Euclidean space, structured by the scalar product and metric defined 

by the weight matrix Dw.  The solution, a low-dimensional subspace that fits the points as closely 

as possible, is established by weighted least-squares, where each point is weighted by its mass.  

The following function is thus minimized: 

                               (3) ])ˆ()ˆ(trace[)ˆ()ˆ()ˆIn( TT
YYDYYDyyDyyYY   wriiwi iiir

where , the i-th row of  Y , is the closest low-dimensional approximation of yi.  The function 

In(…) stands for the inertia, in this case the inertia of the difference between the original and 

approximated matrices.  The total inertia, which is being decomposed or “explained” by the 

solution, is equal to In(Y).    

iŷ ˆ

As is well-known (see, for example, Greenacre, 1984, Appendix), the solution can be obtained 

neatly using the generalized singular value decomposition (SVD) of the matrix Y.  

Computationally, using the regular SVD, the steps in finding the solution are to first pre-process 

the matrix Y by pre- and post-multiplying by the square roots of the weighting matrices, then to 

calculate the SVD and then post-process the solution using the inverse transformation, leading to 

so-called principal coordinates, principal axes, standard coordinates and contribution 

coordinates.  The steps are summarized as follows: 

1.                                           (4) 2/12/1
wr YDDS 

2.   (the SVD),                                                                 (5) TVUDS 
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     where the left and right singular vectors in the columns U and V satisfy 

     UTU = VTV = I, and D is the diagonal matrix of positive singular 

     values in descending order:  12···>0.   

3. Principal coordinates of rows:              UD                  (6) DF 2/1 r

4. Principal axes:                                       VD               (7) A 2/1 w

5. Standard coordinates of columns:          VD                      (8) Γ 2/1
w

6. Contribution coordinates of columns:  VΓ              (9) DΓ   2/1* w

From (4) and (5) Y can be written as: , where F is the matrix 

of row principal coordinates (6) and the columns of  are the principal axes (7): each 

row of Y is thus a linear combination of the rows of AT, i.e. the i-th row of Y, written as a 

column vector, is a linear combination of the principal axes, where the coefficients of the linear 

combination are the principal coordinates in the i-th row of F.  Notice that the principal axes are 

orthornormal in the metric Dw, forming a new set of basis vectors for the rows of Y: 

.  Rows (cases) are conventionally depicted by points, 

almost always in principal coordinates, which are the projections of the case vectors yi onto the 

principal axes (projections are always in the metric defined by Dw): 

(see (6)).  The columns (variables) 

are conventionally depicted by arrows and in one of two scalings, either standard coordinates or 

contribution coordinates.  The standard coordinates of the variables are projections onto the 

principal axes of unit vectors in the full space of the variables (e.g., [1  0  0  ···  0] for the first 

variable, [0  1  0  ···  0] for the second variable, etc…, constituting an identity matrix I):  

 (see (8)).  The contribution coordinates in *, simply equal 

to the singular vectors V (i.e., the standard coordinates  multiplied by the inverse square roots 

of the variable weights – see (8) and (9)) form a useful alternative scaling for the variables, 

TT FADVUDDY   ))(( 2/12/1
wr 

VDA 2/1 w

FUDDV  


2/12/1 ) r

IVDDDVADA  )()( wwww

DDDVUDDAYD  


2/12/1 ()( wwwrw
T

ΓVDVDIDAID   2/12/1 )( wwww

 2/12/1TT
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especially when the variables have different weights.  These coordinates maintain the directions 

of the standard coordinates but rescale their lengths so that their squared values along principal 

axes are the variables’ contributions to the respective axes (Greenacre 2013).  A biplot of the 

cases and variables in a two-dimensional solution, say, would use the first two columns of F for 

the cases and either  or * for the variables. The total inertia is the sum of squares of the 

singular values 1
2+2

2+… ;  the inertia accounted for in a two-dimensional solution, say, is the 

sum of the first two terms 1
2+2

2; while the inertia not accounted for (i.e., the residual inertia 

(3)) is the sum of the remaining ones: 3
2+4

2+… .   

Apart from this simple decomposition of the inertia in the data matrix, there is another benefit of 

the weighted least-squares approach via the SVD, namely a further breakdown of the inertia for 

each point along each principal axis.  For example, since FTDrF = D
2  (from (6)), i rifik

2 = k
2, 

so each rifik
2 is a contribution of the i-th point to the k-th axis’s inertia of k

2, and at the same 

time rifik
2 is a contribution of the k-th axis to the i-th point’s inertia of k rifik

2.  These 

contributions give very useful diagnostics for quantifying the quality of representation of the 

points and are routinely computed in correspondence analysis.   When applied to the columns 

(the variables) they form the basis of the contribution coordinates, showing explicitly which 

variables contribute to each principal axis of the solution – see Greenacre (2013) for more 

details.   

3.  Computing the variable weights 
 

We now consider the case when any measure of distance or dissimilarity measure is used 

between cases, not necessarily Euclidean-embeddable.  Using conventional MDS notation (Borg 

and Groenen, 2005) let us suppose that ij is the observed distance/dissimilarity between 

individuals i and j based on their description vectors xi and xj.  We use dij = dij(w) to indicate the 
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weighted Euclidean distance of the form (2) based on (unknown) weights in the vector w.  The 

problem is then to find the weights that give the best fit to the observed dissimilarities by 

optimizing the fit to distances through least-squares scaling (LSS) by stress, that is, minimizing 

  2(w) = 
 

 
 






ji ij

ji ijij d
2

2)(



 w
         (10) 

over w. The notation  ji
denotes summation  





n

j

j

i2

1

1
over the half triangle of the 

corresponding n  n square matrices.   We follow the algorithmic approach for minimizing 2(w) 

by the method of majorization (De Leeuw, 1977, 1988; Borg and Groenen, 2005). The extension 

of the method by De Leeuw and Heiser (1980) allows a variety of restrictions to be incorporated.  

Commandeur and Heiser (1993) worked out the theory in detail for a variety of dimension-

weighting models, including for the weighted Euclidean distance.  The approach taken here is 

the same as Commandeur and Heiser (1993), except that it is focused only on updating the 

weights w in the weighted Euclidean distance.  Full details are given in Appendix 1.  Note that 

the masses ri assigned to the cases can be taken into account in the fitting, in which case the (i,j)-

th squared terms in the numerator and denominator of (10) are multiplied by rirj – this is a simple 

generalization of the algorithm in Appendix 1.   

The goodness of fit of the weighted Euclidean distances to the original distances at an optimum 

can be measured by the squared Tucker’s congruence coefficient  

                                  
 

  
 





ji ijji ij

ji ijij

d

d

)(

)(
22

2 

w

w




                                                               (11) 

(Tucker, 1951) or, equivalently, by 1 minus the stress.  Our biplot procedure thus passes through 

two stages of approximation, first the fitting of the distances by estimating the variable weights, 

and second the matrix approximation of the generalized SVD, defined in (4)–(9), to give the 
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graphical display of the weighted Euclidean distances and the associated biplot vectors for the 

variables. 

In the cases of the aforementioned methods already based on weighted Euclidean distances, 

namely correspondence analysis and principal component analysis of standardized data, these are 

subsumed in the weighted Euclidean biplot approach.  For example, if Euclidean distances are 

computed on standardized data, the estimated squared weights will be exactly the inverses of the 

variables’ variances and the weighted Euclidean biplot will be equivalent to the PCA. 

4.  Application – the Bhattacharya (arc cos) distance 
 

This research was originally motivated by an article in the Catalan statistical journal Qüestiió 

(now published in English under the name SORT) by Vives and Villaroya (1996), who applied 

“intrinsic data analysis” (Rios, Villaroya and Oller, 1994) to visualize a compositional data 

matrix, specifically the composition in each of the 41 Catalan counties (called comarques) of 

eight different professional groups.  The full table, in percentage form, is given in the Appendix 

2 – in what follows we use the data in the form of proportions.  The analysis of Vives and 

Villaroya (1996) is based on the Bhattacharyya distance between the 41 counties: 

) ( cos arc),(  2  k jkikji ppd pp                             (12) 

where pik is the proportion of professional group k in county i , pi is the vector of proportions for 

county i, and the function arc cos is the inverse cosine.  The same authors report that their results 

are almost identical to those of correspondence analysis (CA).  In CA the inherent weights are 

the inverses 1/ck of the column averages.   

Using the majorization approach to fit weighted Euclidean distances to the arc cos distances, the 

weights are estimated to be the following for the eight professional groups, and compared to the 

inherent CA weights:  
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          Weights estimated by LSS fitting to Bhattacharyya distances 

                      Pro&Tec   PersDir   ServAdm   Com&Ven  Hot&Alt  Agr&Pes  Indust    ForArm 

                        1.62          2.10          2.23         1.52           1.47         1.31          0.90         5.37  

       Weights implied by correspondence analysis 

                      Pro&Tec  PersDir   ServAdm  Com&Ven   Hot&Alt  Agr&Pes  Indust     ForArm 

                        1.59          3.60          1.52         1.49           1.62         1.46          0.79         8.31  

The two sets of weights are plotted against each other in Figure 1 – notice that we have rescaled 

the weights to be comparable, using the mean of the ratios of the two sets of distances as a 

scaling factor.  It is interesting to see that the variable “ForArm” (forces armades in Catalan, i.e. 

armed forces) receives much higher weight than the others, very similar to the situation in CA 

where it is weighted highly because of very low relative frequency and thus low variance – see 

top right hand point in Figure 1.  The arc cos distance inherently weights this variable highly as 

well, even though this is not at all obvious from its definition in (12).  The fact that the estimated 

weights and the CA weights so closely resemble one another explains why the results obtained 

by Vives & Villaroya (1996) are so similar to those obtained by CA. 
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Hotel&Tourism
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Professional&Technical
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Figure 1: Comparison of estimated weights that give optimal LSS fit to the arc cos 

distances (vertical axis) and correspondence analysis weights (horizontal axis).  Both axes 

are on a logarithmic scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Scatterplot of the  weighted Euclidean distances versus the arc cos distances 

computed between the 41 counties.  

The fit of the weighted Euclidean distances to the arc cos distances is excellent: Tucker’s squared 

congruence coefficient equals 0.989.  The 4140/2 = 820 pairs of distances are plotted in Figure 

2. 

Figure 3 shows the contribution biplot (Greenacre 2013) of the result, with rows (counties) in 

principal coordinates so that we can interpret the inter-row distances, and the columns 

(professional categories) in contribution coordinates.  Projecting the rows onto the biplot axes 

defined by the column vectors will give an approximation to the original data values, while the 

most outlying columns on the two principal axes are the most determinant in the solution.   

Clearly, the professional categories that most distinguish the counties are “agriculture & 

fisheries” on the first axis and “industrial” on the second, with a closely related set of four 
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categories towards bottom right separating out the counties such as Garraf (Ga), Barcelona (Br) 

and Val d’Aran (VA), which are higher on some or all of “Services/Administration”,  
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Figure 3:  Biplot of 41 Catalan counties (rows, in principal coordinates) and 8 professional 

categories (columns, in contribution coordinates).  The row coordinates have been 

multiplied by 2 to improve legibility.  Percentages of inertia explained on the axes are 

54.2% (horizontal first axis) and 37.1% (vertical second axis), totalling 91.3%. 
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“Hotels/Tourism”, “Professional/Technical” and “Commercial/Sales”, while being lower on 

“Agricultural/Fisheries” and “Industrial”.  “Armed forces” and “Management” have little 

relevance to the solution and can be ignored. 

Table 1 shows the contributions to inertia that are another spin-off of our approach – we show 

the contributions for the column points, with all values given in thousandths, i.e. permills.  The 

columns headed CTR show inertia components relative to the respective principal inertias, or 

squared singular values, for each of the two dimensions, often called the absolute contributions 

in correspondence analysis – these values are related to the contribution coordinates in the biplot.  

The columns headed COR show inertia components relative to the inertias of the respective 

column points.  The quality of display of each column’s inertia in the two-dimensional solution 

is given in the column headed QLT – these are equivalent to the inertia explained of each 

variable’s regression on the two dimensions, for example 62.5% of the inertia of “Professional & 

Technical” is explained by the two dimensions. 

   Quality                    Principal axes 

                              1                     2  

Principal inertias                                  0.0146     0.0100 
 (% of total)                  (54.2%)    (37.1%) 

Prof&Tec 
PersDir 

Serv&Admin 
Com&Ven 

Hotel&Altres 
Agric&Pesc 

Indust 
ForArm 

 QLT      CTR  COR   CTR  COR 
 
 625       20  210    57  415 
 411        2  275     2  136 
 773      110  621    39  152 
 777       44  501    35  276 
 661       33  219    98  442 
 998      784  979    22   19 
 999        6   12   745  987 
 142        0    5     1  137 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1:  Contributions of the eight column points along first two principal axes.  The 

principal inertias (eigenvalues, or squared singular values) are decomposed amongst the 

points as given in the columns CTR, given in “permills”: for example the first axis is 

determined mostly by points Agric&Pesc (Agriculture & Fisheries) (78.4%).  The inertia of a 

point is decomposed along the principal axes according to the values in the columns COR and 

can also be interpreted as squared correlations of the points with the principal axes.  Thus the 
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point Indust  (Industrial) is mostly explained by the second axis, while ForArm is not well 

explained by either axis and also plays hardly any role in determining the two-dimensional 

solution, even with the large weight assigned to it.  The column QLT refers to quality of 

display of each variable in the plane, and is the sum of the COR columns. 

 

 

 

5.  Discussion and conclusion 

The idea in this paper is to replace the user’s preferred distance/dissimilarity measure by the 

“closest” weighted Euclidean distance, which is not only more manageable but brings with it a 

host of results to assist in the interpretation as well as the classical biplot displays.  In the 

example presented here it has been possible to approximate the given measure very accurately by 

a weighted Euclidean distance.  The weights allocated to the variables are estimated using the 

majorization algorithm.   These weights are of interest per se, since they reflect the intrinsic 

weighting of the variables implied by the chosen dissimilarity measure, which is usually not 

obvious from the definition of this measure, as testified by the example of the arc cos distance.  

As an alternative approach to the estimation of the weights, one could use squared distance 

scaling through S-stress. The advantage of that approach is that the weights can be obtained 

using quadratic programming. The disadvantage is that the weights tend to be dominated by the 

large dissimilarities. It is for this reason that we prefer the majorization solution through stress 

proposed in this paper. 

Finally, we reiterate that the above approach subsumes regular methods such as correspondence 

analysis that are already weighted Euclidean.  For example, if we computed the chi-squared 

distances between the counties in Appendix 1 and then applied our weight-estimation procedure, 

we would recover the exact weights used in the chi-square distance function, and the weighted 

Euclidean biplot would then be the same as the correspondence analysis biplot. 
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Appendix 1: Computing the variable weights by majorization 

 
The objective for least-squares scaling is: 

 minimize   2(w) =  2)(


ji ijij d w  

where 2( ) ( )kij k ik jkd w x w 2x . For notational simplicity we assume without loss of 

generality that . Expanding  2(w): 


ji ij 12

 2(w) =  


ji ijijji ijji ij dd )(2)(22 ww    

  =  2
   +   

2(w) – 2 (w). 

The term  
2(w) can be conveniently written as 

  
2(w) =  


ji jkikk k xxw 22 )(  = 2

k kk
w a  = wTDaw  

where ak =  )var()1()()( 22
kk kikji jkik nnxxnxx x 

and Da is a diagonal matrix 

with values ak on the diagonal. The difficult part lies in  (w). The core of the majorization 

method for multidimensional scaling lies in replacing in each iteration –2 (w) by a linear 

function –2 ̂ (w,s) = –2wTb(s) such that –2 (w)  –2 ̂ (w,s) and –2 (w) = –2 ̂ (w,w). Here, s 

is the previous estimate of w. Then, in each iteration the so called majorizing function  

 2̂ (w,s) = 2
  +  

2(w) – 2 ̂ (w,s) = 2
  + wTDaw –2wTb(s)  

needs to be minimized. As 2̂ (w,s) is quadratic in w, this is an easy task through the update  

 w+ = 1
aD b(s) (12) 

having elements . To find a b(s) such that the two conditions –2 (w)  –21 ( )k k kw a b  s ̂ (w,s) 

and – 2 (w) = – 2 ̂ (w,w) are satisfied, we consider the Cauchy-Schwartz inequality 

 
2 2 2 2 2( ) ( ) ( )k k ik jk k ik jk k ik jkk k k

w s x x w x x s x x       
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that becomes an equality whenever w = s. Multiplying both sides by 2 21 (k ik jkk
s x x  )  

yields  

 

2 2
2 2

2 2

( ) ( )
( ) ( )

( )( )

k k ik jk k k ik jkk k
ij k ik jkk

ijk ik jkk

w s x x w s x x
d w x x

ds x x

 
       



 


w
s

. 

Multiplying both sides by ij  gives 

 2( ) ( )
( )
ij

ij ij k k ik jkk
ij

d w s x
d

x


   w
s

. 

The inequalities above assume that dij(s) > 0. If dij(s) = 0, then the right part of the inequality is 

replaced by 0 so that −dij(s)  0 that is trivially true due to the nonnegativity of the Euclidean 

distance. Thus, let cij = ( )ij ijd s  if dij(s) > 0 and cij = 0 if dij(s) = 0. Then 

 2( ) ( )ij ij k k ij ik jkk
d w s c x    xw . 

Summing over i, j gives 

),(ˆ2)(2)(2)(2)(2 2 swsbwww     
T

jkikk ji ijkkji ijij xxcswd  

with  

                            bk(s) = .                                                          (13) 2)( jkikji ijk xxcs  

The majorization algorithm thus proceeds as follows: 

1. Choose a starting value of s, for example, s = 1. 

2. For k = 1,...,m, kw  = bk(s)/ak  =  )var()1()( /)( 2
kji jkikijk nnxxcs x 

. 

3. Set s = w+ and repeat 2 and 3 until convergence. 

These computations can be done through the SMACOF package (de Leeuw and Mair, 2009) in R 

(R development core team, 2011).  R code for the application reported in this article can be 

obtained from the authors. 
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Appendix 2: Percentages of professional groups in Catalan counties 

 

County Abbrevn Pro&Tec PersDir ServAdm Com&Ven Hot&Alt Agr&Pes Indust ForArm
Alt Camp AC 9.62 1.90 11.30 11.10 6.84 9.89 49.14 0.20
Alt Empordà AE 8.42 2.26 14.39 15.73 13.77 10.02 34.50 0.91
Alt Penedés AP 9.08 1.88 13.76 11.55 7.51 6.86 49.23 0.14
Alt Urgell AU 10.39 1.80 11.15 13.62 10.65 14.26 37.08 1.05
Alta Ribagorça AR 13.90 1.83 7.78 10.41 15.81 12.95 37.25 0.08
Anoia An 8.79 1.95 11.01 11.31 7.66 3.57 55.57 0.14
Bages Ba 11.28 1.84 11.66 12.75 8.22 3.15 50.79 0.31
Baix Camp BC 12.15 2.11 13.14 14.98 11.13 6.97 39.29 0.23
Baix Ebre BE 10.85 1.70 10.26 12.46 8.85 16.34 39.25 0.29
Baix Empordà BM 8.22 2.16 10.87 14.33 13.56 8.03 42.46 0.37
Baix Llobregat BL 5.80 1.88 14.68 12.59 11.71 1.22 51.99 0.13
Baix Penedés BP 7.95 2.28 12.14 14.22 12.55 5.59 44.91 0.35
Barcelona Br 17.13 2.90 21.37 14.81 11.16 0.40 32.07 0.15
Berguedà Be 10.14 1.21 8.91 11.48 8.35 8.33 51.01 0.58
Cerdanya Ce 9.96 2.35 9.36 13.75 15.92 13.57 34.33 0.77
Conca de Barbera CB 8.62 1.90 9.73 9.66 7.47 16.34 46.18 0.11
Garraf Ga 20.60 3.25 20.22 22.91 21.04 4.94 6.79 0.25
Garrigues Gr 7.90 1.16 7.68 9.07 6.22 34.27 33.51 0.19
Garrotxa Gx 10.14 2.07 10.96 10.82 7.54 6.71 51.58 0.17
Gironés Gi 14.18 2.30 17.22 13.90 9.94 3.35 38.60 0.52
Maresme Ma 11.85 3.21 13.90 14.37 10.03 4.16 42.30 0.17
Montsía Mo 6.98 1.48 8.41 10.75 7.32 24.11 40.54 0.40
Noguera No 7.32 1.20 6.02 7.93 5.33 20.80 51.18 0.23
Osona Os 9.94 1.83 10.70 11.00 6.57 6.24 53.62 0.10
Pallars Jussà PJ 12.36 1.72 10.44 10.14 8.94 20.82 33.36 2.20
Pallars Sobirà PS 13.43 1.29 9.59 7.10 14.72 23.84 29.74 0.29
Pla d'Urgell PU 8.25 1.62 9.74 9.75 5.71 24.57 40.15 0.23
Pla de l'Estany PE 10.95 2.22 12.29 10.45 6.96 9.54 47.50 0.09
Priorat Pr 8.68 1.03 7.41 7.72 7.02 32.16 35.67 0.30
Ribera d'Ebre RE 12.39 0.99 9.06 8.70 7.84 17.45 43.21 0.36
Ripollés Ri 9.24 1.76 8.26 10.09 9.18 7.31 53.91 0.25
Segarra Se 9.93 1.90 9.91 8.50 6.30 17.49 45.89 0.09
Segría Sg 13.03 2.13 13.76 13.78 10.39 14.42 31.53 0.96
Selva Sv 7.33 1.96 10.84 12.46 15.20 5.67 46.36 0.17
Solsonés So 10.15 1.44 7.77 7.42 8.20 21.20 43.67 0.14
Tarragonés Ta 14.22 2.12 16.61 12.89 12.91 2.90 37.73 0.61
Terra Alta TA 4.83 0.91 4.90 7.21 4.65 39.10 38.05 0.36
Urgell Ur 9.06 2.09 9.76 12.70 6.73 17.68 41.72 0.28
Val d'Aran VA 11.18 6.90 10.84 13.64 21.30 5.42 29.52 1.21
Vallés Occidental VO 12.05 2.27 14.64 13.20 8.97 0.68 48.09 0.10
Vallés Oriental VE 9.32 2.19 13.22 11.33 8.19 2.44 53.19 0.12
Average 10.43 2.02 11.36 11.77 9.96 12.31 41.77 0.38  

 

Pro&Tec: professional/technical; PersDir: management; ServAdm: administration/services; Com&Ven: 

commercial/sales; Hot&Alt: hotel/tourism; Agr&Pes: agriculture/fisheries; Indust: industry; ForArm: armed 

forces 
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