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1 Introduction

We present a new solution concept for three-player, transferable utility, co-

operative games, which can readily be applied to so-called multilateral bar-

gaining problems, where not only the three-player coalition but also alter-

native bilateral coalitions can form. This solution concept can be viewed

as a generalization of the Nash Bargaining Solution (NBS) based on con-

sistent beliefs. In particular, as part of the solution concept we specify

for each possible coalition both how players intend to share the surplus (if

there is any) and the probability distribution over alternative events in case

negotiations fail in the grand coalition. Thus, in contrast to alternative

generalizations of the NBS, players’ beliefs in each particular negotiation

are mutually consistent (they are conditional distributions of the same joint

probability distribution) and, moreover, satisfy some notion of consistency

with respect to payoffs.

We also offer a non-cooperative bargaining protocol that asymptotically

implements our solution concept (as the discount factor approaches one.)

Such a non-cooperative approach allows us to illustrate the implications of

our consistency requirements in terms of the flexibility of the bargaining

protocol.

Our solution concept for cooperative games results from three basic pos-

tulates. First, following Harsanyi, the solution (agreement in the grand

coalition) should "depend on the pattern of cooperation and/or conflict that

would emerge among different groups of players should a general agreement

fail." (Harsanyi, 1959, page 332.) In our case, the solution concept coincides

with the generalized NBS of the grand coalition, where the disagreement

points are endogenous and determined by the relative bargaining position

of players in alternative, mutually exclusive bilateral coalitions.

Second, we model these bilateral negotiations as simultaneous Nash bar-

gaining processes. Each player simultaneously bargains with the other two
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players, and the outcome of each negotiation can be represented by the

two-player NBS. The disagreement points in each bilateral negotiation are

endogenous and related to what each player can achieve in the alternative

negotiations. In this respect we follow Benett (1997), which is probably in

spirit the paper closest to ours. Thus, our solution concept is motivated

by economic problems where, in the absence of an agreement in the grand

coalition, all three players are free to seek a bilateral agreement without

facing any other constraint. We discuss various economic examples below.

Third, and this is the novel postulate, disagreement points in any nego-

tiation are based on consistent beliefs. In particular, we propose that the

solution to the simultaneous bilateral negotiations must specify not only

how the surplus would be shared by each coalition, but also the probability

of success of that coalition. When two players engage in a bilateral negotia-

tion, they should form beliefs about the likelihood that each of them would

strike a deal with the third player, should their own negotiation fail. Given

the initial probability distribution, consistency requires that these beliefs are

obtained by Bayesian updating conditioning on the failure of that bilateral

negotiation. In other words, all players share common priors that they use

to compute conditional distributions by applying Bayes’ rule. Moreover, this

postulate also requires consistency between payoffs and beliefs. In particu-

lar, we assume that the probability of success of a bilateral coalition can only

be significantly positive if both players expect to obtain in that negotiation

a (weakly) higher payoff than in the their alternative negotiations. Finally,

the probability distribution of the success of alternative bilateral coalitions,

together with the prediction about how each coalition share their surplus,

can be used to compute the disagreement points in the grand coalition.

Note that this third postulate implies that beliefs satisfy that: (a) from

the point of view of each negotiating pair, the probabilities that the two

players assign to the alternative negotiations succeeding should their nego-
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tiation fails, add up to one; and (b) the beliefs that any player holds in any

negotiation are common, since they emanate from the same joint probability

distribution conditional on the same event.

The main contribution of this paper is to demonstrate the implications

of our belief consistency requirement on the solution of cooperative games.

This can be illustrated by considering alternative solutions proposed in the

literature. For instance, in Benett (1997) the disagreement points in each

bilateral negotiation are the payoffs that players obtain in their negotiation

with the third player. This is equivalent to assuming that different players

assign probability one to two different, mutually exclusive outcomes.1 A

similar problem arises when one considers the internal consistency proper-

ties that popular solution concepts have been shown to satisfy, and that

are invoked to claim that these concepts are appropriate generalizations of

the NBS for general games. More specifically, Hart and Mas-Colell (1989)

characterize the Shapley value as the unique solution concept that satis-

fies one such definition of internal consistency. Using a different definition,

Sobolev (1975) did the same for the nucleolus.2 We will argue that both

definitions involve specifications of reduced games that are consistent with

the NBS only if payers hold inconsistent (incompatible) beliefs, just as in

Benett (1997).

As already mentioned, we postulate our solution concept also as a gen-

eralization of the NBS for three-player games. In general, one may extend

the two-player NBS to more than two-player games following two alternative

routes: backward and forward. The former involves a (perhaps axiomatic)

1The approach followed by Benett (1997) does not always generate a unique prediction.
In fact, a solution specifies the distribution of surplus in each alternative bilateral nego-
tiation. The disagreement point in each negotiation is the payoff that each player would
obtain in an alternative negotiation. Thus, the disagreement point in some negotiations
may be outside the feasible set of that negotiation, which Benett interprets as the failure
of the negotiation. A predicted outcome specifies what negotiation will succeed.

2For the games we are considering, the nucleolus coincides with the kernel and also
with the Nash set. See Peleg (1986) and Serrano end Shimomura (1998) for similar results
for these two concepts for more general games.
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characterization of a solution concept for n players, and by applying an

internal consistency or reduced game property, finding that for n = 2 we

obtain NBS. This is the route typically followed when authors prove in-

ternal consistency. The alternative forward path would take the NBS as

the starting point and, based on a criterion for extrapolating the principles

of that solution, attempt to define a solution for a larger class of games.

Harsanyi (1959) offered an early example of an exercise of this kind, when

he argued that the right generalization should propose disagreement points

for the grand coalition, and these should come from mutually dependent

payoffs predicted for smaller coalitions. For games where the alternative

to the grand coalition are simultaneous bilateral negotiations, we follow this

path by postulating that players should predict not only payoffs but also the

probabilities of success of each agreement, so that payoffs and probabilities

are consistent with each other. We think this approach is rooted in the main

tradition of game theory.

In Section 2 we formalize these ideas. We show that our solution con-

cept (the R−solution) for three-player, transferable utility, superadditive,

cooperative games always exists and is unique. As a step to defining the

R−solution, we need to analyze what is known as the three player/three

cake problem (Binmore, 1985). That is, a situation where only bilateral

coalitions can form. We obtain a prediction for that case (PSBN) which

is of independent interest for a variety of economic problems, like merger

analysis.

Section 3 provides a dynamic, non-cooperative bargaining protocol whose

stationary, subgame perfect equilibrium payoffs are arbitrarily close to those

predicted by the R−solution as the discount factor approaches 1. Such

a bargaining protocol offers further valuable interpretations of the require-

ments of the R−solution; in particular, concerning the consistency of beliefs.

It differs from standard bargaining protocols in two main respects. First,
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the game starts in a trilateral negotiation phase, but it may switch (with an

exogenous and potentially very low probability) to a bilateral negotiation

phase. Once the game enters a bilateral negotiation phase it never returns

to a trilateral phase. Such asymmetric regime switching can be thought of

as the formalization in a non-cooperative game of the first postulate dis-

cussed above, which grants the grand coalition a central role. Second, as

far as bilateral negotiations are concerned, it separates the selection of the

negotiation partners from the actual negotiation. This is achieved in a way

that provides full flexibility in terms of which coalitions can be formed in a

particular period and for any given choice of Nature. Thus, we avoid any

artificial restrictions that distort the relative bargaining power evident in

standard protocols.34

In Section 4 we discuss the properties of the R−solution and its differ-

ence and similarity to alternative solution concepts. Contrary to the Shapley

value, the R−solution is a selection of the core when the latter is not empty.

When the core is empty, the Aumann-Maschler bargaining set (BS) is the

most popular generalization. The BS contains the core and is never empty.

We show that the R−solution is a selection of the BS. In fact, for superaddi-

tive, three-player, TU games, the BS (for the grand coalition) coincides with

the core when the latter is not empty, and is a singleton when the core is

empty. Thus, the R−solution coincides with the BS in the latter case (and

hence with any selection of the BS). Moreover, if the grand coalition does

not add any additional surplus, the R−solution is the most egalitarian se-

lection in the BS. Thus, it is more egalitarian than other, different selections

3 In order to fix ideas in Section 3 we contrast our bargaining protocol with the one
proposed by Fridolfsson and Stenneck (2005).

4Recently, Compte and Jehiel (2010) have defined the Coalitional NBS as the allocation
of the core that maximizes the product of payoffs. Their main goal is to provide condi-
tions under which the Coalitional NBS can be asymptotically implemented by a simple
bargaining protocol that (contrary to Harsanyi’s postulate) treats all coalitions, including
the grand coalition, symmetrically. Their game cannot implement an efficient solution
when the core is empty. When the core has a non-empty interior the Coalitional NBS and
the R−solution select different allocations.
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of the core or the BS, like the nucleolus.5

We also discuss whether or not the R−solution satisfies several impor-

tant axioms. We show that the R−solution satisfies symmetry, efficiency,

and the dummy player axioms. Thus, it has to violate the additivity axiom

since the Shapley value is the only solution concept that satisfies all four.

Indeed, the R−solution is not additive. However, we argue that this non ad-

ditivity rather than being a weakness is a desirable property of the concept,

at least for a large set of problems. The seemingly innocuous additivity ax-

iom implicitly imposes too much structure on what "protocols" are feasible

for the players. For example, in a standard one-buyer, two-sellers example,

it implicitly imposes a restriction so that the buyer cannot attempt bundling

or making joint offers for two goods when dealing with the same two po-

tential sellers of these two goods. The R−solution lets the primitives of the

problem speak about such possibilities. Finally, we argue that the internal

consistency requirements discussed in the literature involve definitions of re-

duced games, whose disagreement payoffs are based on inconsistent beliefs.

In contrast, the R−solution implicitly provides a natural definition of the

reduced game based on mutually consistent beliefs.

In the main part of the paper we restrict attention to games in character-

istic form, in which bilateral coalitions are mutually exclusive. In Section 5

we show how the R−solution can also be applied to games with coalitional

externalities (partition function form games) by simply reinterpreting the

value of one-player coalitions. We also explore possible routes to extend the

R−solution to three-player games with more than one compatible bilateral

coalition, and as well to games with more than three players.

5The nucleolus is also a selection of the BS. Thus, when the core is empty, the nucleolus
and the R−Solution coincide. However, when the core is not empty and set-valued, the
two concepts differ. We elaborate on this point in Section 4.
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2 The R−solution of a three-player game

Let N = {1, 2, 3} be the set of players, which can be indistinctively indexed

by i, j, k, and let 2n represent the set of subsets of N , with cardinality n. An

element Z ∈ 2n represents a coalition. A TU game in characteristic form is

the pair (N, v), where v : 2n → R indicates the worth of each coalition and

satisfies v(∅) = 0. We assume v to be superadditive.

Assumption 1 (superadditivity): If Z,Z 0 ⊂ 2n and Z ∩ Z 0 = ∅, then

v(Z) + v(Z 0) ≤ v(Z ∪ Z 0).

To save some space, we use an abbreviated notation for the v function:

vij = v({i, j}), vi = v({i}) and V = v({1, 2, 3}). When we write "for

all i, j" or "for all i, j, k" we mean for all i, j = 1, 2, 3, i 6= j, and for all

i, j, k = 1, 2, 3, i 6= j 6= k, i 6= k, respectively; different sub/superindices

in the same expression always denote different players. Without loss of

generality, we assume that v12 − v1 − v2 ≥ v13 − v1 − v3 ≥ v23 − v2 − v3.

In other words, coalition {1, 2} is the (weakly) most "efficient" among the

two-player coalitions and coalition {2, 3} the (weakly) least efficient.

2.1 Bilateral negotiations

As discussed in the Introduction the most novel building block of our theory

is the determination of disagreement payoffs for negotiations in the grand

coalition based on consistent beliefs. We identify these disagreement payoffs

with the expected value of outcomes in the three possible bilateral negotia-

tions, where the expectation is taken with respect to the prediction of which

of these negotiations would be implemented (with what probability). In

other words, we begin by formulating a solution to the three-player/three-

cake problem where players hold consistent beliefs about both what cake

will be shared and how it will be shared.

Thus, consider the three possible bilateral negotiations between players

i and j, for all i, j. For each player i in each bilateral negotiation (i, j),
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we denote i’s predicted payoff by uiji . Also, pij denotes the probability that

players i and j are the ones that successfully form a coalition and implement³
uiji , u

ij
j

´
.6 Finally, for each player i in each bilateral negotiation (i, j), we

also define i’s disagreement payoff in that bilateral negotiation, which we

represent by tiji . Before formally defining our solution, we first explain the

consistency requirements on this set of values that are the basis for that

solution.

i) Given the bilateral disagreement payoffs, tiji , t
ij
j , players i and j share

vij according to the NBS, provided this surplus is positive. That is, u
ij
i =

tiji +
1
2

³
vij − tiji − tijj

´
= 1

2

³
vij + tiji − tijj

´
, if vij ≥ tiji + tijj . However, if

their disagreement payoffs sum up to an amount in excess of the worth of

the coalition, vij < tiji +tijj , then we impute u
ij
i = vi. That is, in the absence

of a surplus players are not willing to reach an agreement, and payoffs in

that particular negotiation coincide with one-player coalition values.

ii) Disagreement payoffs in each bilateral negotiation are endogenous,

computed according to the payoffs predicted in, and the probability distri-

bution over alternative, two-party negotiations. In particular, suppose that

the negotiation between i and j flounders, and players contemplate their

options within the larger picture of all two-player negotiations. As players

calculate what they expect to get in this scenario, tiji , they predict: (a) with

probability pij what they face is precisely this default, t
ij
i ; (b) with probabil-

ity pik coalition (i, k) will succeed, and player i’s payoff will be u
ij
i ; and (c)

with probability pjk it will be the coalition (j, k) that succeeds, and hence

i’s payoff will be vi. Thus, t
ij
i = pijt

ij
i + piku

ik
i + pjkvi. If pij < 1 we can

6For completeness, we should also contemplate the possibility that no coalition would
form. That is, the possibility that all three bilateral negotiations fail. Doing so would
introduce no change in our solution. Consequently, we prefer to simplify the discussion
by imposing the constraint, instead of obtaining it as a result, that one of the two-player
negotiations will succeed in case the grand coalition did not form.
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rewrite this expression as:

tiji =
piku

ik
i + pjkvi
1− pij

.

Consequently, player i0s disagreement payoff in her negotiation with j is

the expected payoff in alternative negotiations, where the expectation is

"conditional" on her negotiation with j having come to a halt.

iii) Finally, we place some restrictions on the set of admissible probability

distributions. A coalition between players (i, j) can succeed with a non-

negligible probability, pij , only if both players weakly prefer such agreement

over their alternative, uiki ≥ uiji and ujkj ≥ uijj .

For some types of games, our solution predicts that a particular coalition

would form with probability one, should the three-player coalition fails to

form. However, since Bayes’ rule does not constrain probabilities when

conditioning on zero probability events, allowing for probability-one events

leaves too many degrees of freedom with respect to what are consistent

outcomes in the rest of events. To avoid this indeterminacy, we proceed

in the standard way of first considering only probability distributions that

assign to each two-player negotiation a probability of success bounded away

from 1. Thus, according to points i), ii), and iii), we begin by formally

defining a prediction for simultaneous bilateral negotiations in a reduced

belief space.

Definition 1 For � > 0, an �−Prediction for Simultaneous, Bilateral Ne-

gotiations for the three-player game (N, v), �− PSBN for short, is a triplen
uiji (�) , t

ij
i (�) , pij (�)

o
i,j=1,2,3

that satisfies:

1)

uiji (�) =

(
1
2

³
vij + tiji (�)− tijj (�)

´
if vij ≥ tiji (�) + tijj (�) ,

vi otherwise;

2) tiji (�) = pij (�) t
ij
i (�) + pik (�)u

ik
i (�) + pjk (�) vi, for all i, j, k;
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3) p12 (�) + p13 (�) + p23 (�) = 1 ; pij (�) ≤ 1 − � for all i, j; and for all

i, j, k, pij (�) > � only if uiji (�) ≥ uiki (�) and uijj (�) ≥ ujkj (�).

Our prediction for simultaneous, bilateral negotiations is the limiting

value of predictions, as the upper bound on pij tends to 1.

Definition 2 A Prediction for Simultaneous, Bilateral Negotiations for the

three-player game (N, v), PSBN for short, is a triple
n
uiji , t

ij
i , pij

o
i,j=1,2,3

such that there exists a sequence of �−PSBN that converges to
n
uiji , t

ij
i , pij

o
i,j=1,2,3

as � goes to 0.

We simplify the presentation of our results here by normalizing vi = 0 for

all i, but close this section by explaining how all results and computations

can be straightforwardly extended to the general case. Meanwhile, payoffs

and disagreement points should be interpreted as net of the worth of one-

player coalitions. Next, we state the main result of this paper.

Proposition 1 For � small an �−PSBN exists for the game (N, v). More-

over, any selection of �− PSBN converges to the same values as � goes to

0. That is, a PSBN exists and is unique, and given by:

(Region 1) if v12 ≥ v13 + v23 and v13 ≤ 1
2v12, then p12 = 1, and u121 =

u122 = 1
2v12;

(Region 2) if v12 ≥ v13 + v23 and v13 ≥ 1
2v12, then u121 = u131 = v13,

u122 = v12 − v13,u133 = 0, p23 = 0 and if v13 < v12 then p12 = 1; and

(Region 3) if v12 ≤ v13 + v23 then uiji = uiki ≡ ui =
vij+vik−vjk

2 , for all

i, j, k, and pij ≡ pij =
uiuj

u1u2+u1u3+u2u3
.

Proof. See Appendix.

The PSBN is intuitive. In Regions 1 and 2, player 3 is relatively weak.

Her contribution to the coalitions with players 1 and 2 is relatively small

with respect to what players 1 and 2 can otherwise obtain together. In these

regions we predict that players 1 and 2 "trade" with probability one (except
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in the limit case of v12 = v13 where these two trades are equivalent) and

player 3 obtains zero. The way players 1 and 2 split the surplus depends on

whether player 1 (given our notation) has a sufficiently important alterna-

tive. If player 1’s alternative is relatively small (Region 1) then the payoffs of

players 1 and 2 coincide with the NBS of their bilateral negotiation in isola-

tion. Any threat by either player of turning to player 3 bears no credibility,

since neither can obtain anything better outside their current negotiation.

However, if player 1’s potential alternative is sufficiently high, then she ob-

tains the full value of this alternative in their negotiation with player 2. The

reason is the following. In her negotiations with 2, player 1 cannot obtain

anything lower than her alternative since otherwise she would have incen-

tives to switch to player 3. She cannot obtain anything higher than her

alternative either, since if that were the case the threat of turning to player

3 would not be credible.

In particular, our solution concept conforms to the "outside option prin-

ciple" (see Shaked and Sutton 1984, and Binmore, Shaked, and Sutton,

1989): the payoffs of players 1 and 2 coincide with the NBS of their bilateral

negotiation in isolation, unless one has an outside option that is binding. In

a PSBN this outside option (for a bilateral negotiation) is "endogenously"

determined (by all simultaneous, bilateral negotiations).7

In Region 3 player 3 is relatively strong (and hence the three players are

relatively similar). In this case, the PSBN predicts that any of the three

bilateral negotiations may succeed with positive probability. If a particular

trade was predicted with probability one, then the player left out would be

able to find a mutually beneficial agreement with any of the two players.

This would render the prediction inconsistent. Thus, in Region 3 the only

consistent prediction involves a positive probability of success for all three
7This is another difference between the R−solution and the concept(s) defined in Ben-

nett (1997). That is, by introducing coherent conjectures with respect to the probabilities
of success, we endogenously obtain the "outside option principle" as a natural outcome of
bargaining à la Nash.
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bilateral negotiations, which in turn requires that all players are indifferent

about with whom to strike a deal. Thus, in this region efficiency fails due

to the relative bargaining strength of the weakest player.

As mentioned above, the PSBN is the basis for the main contribution

of this paper, i.e., the construction of consistent disagreement payoffs for

the negotiations inside the grand coalition. However, it is important to bear

in mind that the PSBN is also of independent interest. Indeed, we view

the PSBN as the right prediction for the three-player/three-cake game,

where one bilateral trade is the only feasible outcome, and side payments

between the trading partners and the non trading player are not feasible. An

important economic example that closely matches this description is merger

analysis. In Section 5 we discuss an example taken from Horn and Persson

(2001). In our view in these cases the PSBN is the right solution concept.

2.2 The trilateral negotiation

Once we have a prediction for the outcome of bilateral negotiations, we

also have all we need to determine the disagreement payoffs in the three-

player negotiation. This last step before defining a solution concept for the

game (N, v), the R−solution, is straightforward: the disagreement payoff of

player i in the negotiations inside the grand coalition, Ti, will simply be her

expected payoff according to the PSBN . A formal definition is required:

Definition 3 A R−solution for the three-player game in characteristic form

(N, v) is a triple (U1, U2, U3) that satisfies: a) Ui =
1
3(V +2Ti−Tj−Tk) for

all i, j, k, b) Ti = piju
ij
i + piku

ik
i + pjkvi, where

n
uiji , t

ij
i , pij

o
i,j=1,2,3

is the

PSBN for the game (N, v).

Characterizing this solution, in particular its existence and uniqueness,

requires characterizing
n
uiji , t

ij
i , pij

o
. This was done in Proposition 1. There-

fore Ti, i = 1, 2, 3 exists and is unique. The proof of the following theorem

is straightforward.
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Theorem 1 The R−solution exists and is unique.

Computing theR−solution is in fact extremely easy. What we offer below

can be considered a user’s manual. In Regions 1 and 2 defined in Proposition

1, the PSBN predicts that players 1 and 2 trade with probability 1. Thus,

the expected payoffs for players 1 and 2 add up to v12, and player 3’s payoff

is zero in both regions. These payoffs are the disagreement payoffs in the

three-player negotiation. Then in the R−solution each player obtains her

disagreement payoff, plus one third of the excess of the worth of the grand

coalition over the efficient bilateral coalition, V − v12.

In Region 3 all two-player coalitions form with positive probability, in

the event the grand coalition fails to reach an agreement. In this region, the

PSBN satisfies some interesting properties. First, as already mentioned,

the payoff for a player in each of her two-player coalitions is the same:

uiji = uiki = ui.8 Also, for each game there exists a number Ψ such that

pijuk = Ψ for all i, j, k. (1)

It is important to note that pij is the probability that player k does not get

uk. Therefore, condition (1) indicates that the "loss" experienced by player k

with respect to the benchmark where she is able to secure uk with probability

one, is identical for all k = 1, 2, 3. This property drastically simplifies the

computation of final payoffs. More specifically, player i0s expected payoff in

the PSBN is:

Ti = (pij + pik)ui = ui −Ψ,

where we have used (1) to obtain the last equality. As a result player i’s

payoff in the R−solution is:

Ui =
1

3
(V + 2Ti − Tj − Tk) =

1

3
(V + 2ui − uj − uk) .

8This number coincides with what Davis and Maschler (1965) called i’s quota. That
is, i’s payoff in the kernel for a coalition structure {(i, j) , k}.
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This makes it possible to compute the R−solution without computing the

probabilities pij . Using Proposition 1 we obtain the final expression:

Ui =
1

3
(V + vij + vik − 2vjk) .

When vi 6= 0, all these computations involve merely substituting vij −

vi − vj for vij , for all i, j, and V − v1 − v2 − v3 for V , and also adding vi to

all values u, t, U and T . Table 1 contains the expression for the R−solution

in this general case.

Table 1: The R−solution
Region 1 Region 2 Region 3

U1
2V+v12+3v1−3v2−2v3

6 v13 − 4v3
3 + V−v12

3
V+v12+v13−2v23

3

U2
2V+v12−3v1+3v2−2v3

6
2(v12−v13)

3 + 2
3v3 +

V−v13
3

V+v12+v23−2v13
3

U3 v3 +
V−v12−v3

3
2
3v3 +

V−v12
3

V+v13+v23−2v12
3

Consider the case V = v12+ v3, where the best that the grand coalition

can do is to implement the "efficient" bilateral trade. It turns out that, in

Regions 1 and 2, the grand coalition is redundant: Ui = Ti. (In particular,

U3 = v3.) However, in Region 3 the grand coalition can fix the bargaining

failure implicitly identified by the PSBN . It is noteworthy that in this

region the non-participating player 3 is able to appropriate a positive surplus

(U3 > v3), precisely because players 1 and 2 are willing to "bribe" player 3 in

exchange for not interfering with the implementation of the efficient bilateral

trade.9

3 A non-cooperative implementation

This section presents and solves a non-cooperative bargaining protocol that

asymptotically implements the R−solution defined in the previous section.
9 In games where V = v12 + v3 the Shapley value still grants player 3 a positive payoff,

even though not directly participating in the formation of the efficient coalition. A stan-
dard justification is that player 3’s positive payoff is precisely the bribe for not interfering
with the efficient outcome. We partly use the same intuition, but only apply it in the case
player 3 has the actual power of preventing the formation of the efficient coalition (Region
3).
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The goal is not only to show that the solution is the outcome of some game,

but also to illustrate the implications of our consistency requirement in terms

of bargaining protocol flexibility.

Consider the following infinite horizon, discrete-time, t = 1, 2, 3, ..., game

Γ(δ, α) played by the three players. At the beginning of each period, the

game may be in either a three-player negotiations phase or a bilateral-

negotiations phase. In period 1, the game begins in the three-player ne-

gotiation phase. If in period t the game is in a three-player negotiation

phase and does not finish in time t, then in period t + 1 the game moves

to a bilateral-negotiations phase with some (perhaps minuscule) probabil-

ity α. Otherwise, it continues in the three-player negotiation phase. If the

game enters a bilateral-negotiations phase at time t + 1, then it will stay

in a bilateral-negotiations phase for all t0 > t + 1 until it ends. Thus, we

may interpret α as the exogenous probability that three-player negotiations

break down. If they do, then there will never be trilateral negotiations again,

although players can keep attempting bilateral agreements.

The stage game in the three-player negotiation phase begins with a move

by Nature, who chooses with equal probability one of the players. The

chosen player then makes a proposal s ∈ R3 to divide V . After the proposal

is (publicly) made, the other two players accept or reject in turn, say by the

order of the integers. In case of acceptance by both, the game ends and the

payoffs are si according to the proposal. In the event either or both players

reject the proposal, the game moves to the next period.

If the game is in the bilateral-negotiations phase, so that it will be in

that phase forever, the stage game is as follows:

(1) Nature selects one of the three players with equal probability. Let

that player be A.

(2) Player A invites one of the other two players to become her negotia-

tion partner. Let us call her player B.
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(3) Player B accepts or rejects. If she accepts then players (A,B) move

to step (4). If player B rejects then players (B,C) move to step (4).

(4) Let (E,F ) be the two players that move to this step from step (3).

Nature selects one of them with equal probability. Let the chosen one be F .

(5) Player F makes a proposal to player E to share vEF . Let that

proposal be θEF , understood as the share of vEF that F keeps.

(6) Player E accepts or rejects F ’s proposal. If E accepts then she gets

vEF −θEF , while player F gets her demand θEF and the game ends. The third

player obtains nothing. If E rejects the offer then the game moves to the

next period.

Thus, in the stage game of the bilateral negotiations phase players first

engage in a process that selects the negotiating partners (steps (1)-(4)),

and next the pair of selected players conduct the actual negotiation (steps

(5)-(6).)

Players discount the future at the common discount factor, δ ∈ (0, 1).

We look for subgame perfect equilibria in stationary strategies for this game.

First, however, let us look closely at the characteristics of this protocol.

Assume α = 0. The three-player negotiation phase is the (projection of the)

simplest, standard protocol that implements the multilateral bargaining so-

lution for pure bargaining problems with exogenous disagreement payoffs, as

δ −→ 1. What we add to this protocol is a (perhaps very small) probability

that the three-player negotiations break down, in which case players remain

free to try to attempt bilateral agreements. Once the pair of negotiating

players have been selected, they can attempt to find a mutually profitable

agreement again following the simplest protocol that, in isolation, would

implement the bilateral Nash bargaining solution.

Thus, only two features of this protocol are novel and require comment.

The first is relatively straightforward: we introduce an exogenous probability

that three-party negotiations break down. In bargaining protocols, the dis-
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count factor typically has two equivalent, alternative interpretations. One is

impatience in the face of delay, which is what we put to work here. The other

is (one minus the) probability that negotiations break down. Here we could

also use this second interpretation. In fact, if we substitute some exogenous

disagreement payoffs for the bilateral-negotiations phase when three-party

negotiations break, we (could set δ = 1, for instance and) obtain the mul-

tilateral Nash bargaining solution for those exogenous disagreement payoffs

when α approaches 0. Actually, we show this property and use it as an

intermediate step.

The second novelty of this protocol is the way that parties to a bilat-

eral negotiation are chosen -in particular steps (2) and (3) of the bilateral-

negotiations phase. These steps are the most distinctive features of our

protocol: their effect is to allow the three players full flexibility as to which

bilateral negotiation is attempted in each period of time. In our approach

there is no implicit imposition of any lower or upper bound on the proba-

bility of any agreement or any set of agreements. Nature’s movement does

not allow any advantage. In particular, suppose that along an equilibrium

path players i and j prefer meeting with each other rather than meeting with

player k, although they still prefer an agreement with k rather than waiting,

and taking a chance in the next period. Then, even in the most favorable

realization (Nature chooses her in step (1)), there is nothing that player k

can do to prevent players i and j from meeting in the current period. This

would not be the case if we used more standard protocols, where either Na-

ture or an exogenous rule selects who is a party to the bilateral negotiation

in a given period. For instance, in Fridolfsson and Stennek (2005)10 the

player chosen by Nature in step (1) makes an offer to the player she selects

in step (2), thus jumping directly to step (5). That scenario implicitly im-
10Also, see Binmore (1985) and Binmore, Shaked, and Sutton (1989) for surveys of

other protocols for the three-player/three-cake problem. Ray (2007) offers, among other
intersting things, a comprehensive discussion of general features of protocols for coalition
formation.
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poses arbitrary restrictions on the set of feasible payoffs. For instance, in

any equilibrium with no delay (where an agreement is reached in the first

period with probability one) each player, even the weakest (player 3 in our

case), has a probability of at least one third of being part of the success-

ful coalition. Thus, due to the protocol the expected payoff of the weakest

player is artificially enhanced. This kind of lower bound in the probability

of being part of a successful coalition is absent in our protocol, wherein play-

ers’ choices determine the outcome of the negotiations with no exogenous

constraint other than the primitives of the problem.

We now turn to exploring the equilibrium of this game. Note that all

subgames following Nature’s choice to enter into the bilateral-negotiations

phase will be the dynamic game with stage game described by steps (1)

to (6) above. Denote that game by Φ(δ). If Φ(δ) had unique (subgame

perfect, stationary) equilibrium payoffs, x ∈ R3, then all (subgame perfect,

stationary) equilibria of the whole game Γ(δ, α) would coincide with the

equilibria of the game bΓ(δ, α;x), obtained by substituting a terminal node
with payoffs x for each node where Nature chooses to switch to a bilateral-

negotiations phase. As indicated before, showing that bΓ(δ, α;x) implements
the multilateral Nash bargaining solution with disagreement payoffs x as

δ → 1 (plus the necessary continuity of the equilibrium correspondences) is

rather straightforward. We do this in Proposition 3 below, but the main

result here is that equilibrium payoffs of Φ(δ) approach T ∈ R3 as δ → 1,

where T is the vector of expected payoffs of the PSBN . That is, the main

result is that Φ(δ) implements the PSBN as δ goes to 1. This result is

interesting in itself. Indeed, it offers a non cooperative implementation of

our solution to the three-player/three-cake problem.

We need to introduce some additional notation to analyze the game Φ(δ).

A stationary strategy for player i may be described by
³
μji , λ

j
i , λ

k
i

´
for steps

(2) and (3), and
³
θji , ρ

j
i , θ

k
i , ρ

k
i

´
for the remaining steps. μji ∈ [0, 1] is the
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probability that player i proposes player j to be her negotiation partner in

step (2), if i is chosen by Nature in step (1). Given the definition of the game,

the probability that i proposes k is μki = 1− μji . λ
j
i ∈ [0, 1] is the probability

that player i accepts player j’s invitation to become a negotiation partner

in step (3), if so proposed, and λki is the probability i accepts player k’s

invitation. In line with the restriction to stationary strategies, we impose

the constraint that λji = 1 − λki . That is, player i accepts an invitation to

meet player j with the same probability that she rejects player k’s invitation

(and instead meet player j). Thus, in case Nature chooses player i, the

probability that players (i, j) negotiate in steps (5) and (6) is μjiλ
i
j ; the

probability that (i, k) negotiate is μki λ
i
k =

³
1− μji

´
λik; and the probability

that (j, k) negotiate is μjiλ
k
j + μki λ

j
k = μji

¡
1− λij

¢
+
³
1− μji

´ ¡
1− λik

¢
.

We implicitly rule out the possibility that player i makes no invitation

to meet when Nature chooses her to be the first proposer. This again is

in line with the spirit that no player can veto other players’ meeting: by

assuming that player i has to make an invitation, and so has to give either

player j or player k a chance to decide on the pair that meets, we prevent

her from vetoing a meeting between players j and k. Also, we assume that

if a player is offered a first invitation to meet then she either accepts the

invitation or meets the third player. Similarly, we assume in the latter case

that meeting will take place, and the third player cannot refuse to meet.

The reader should note this is only to simplify the moves, since meeting a

partner and not making or accepting offers is always a choice and essentially

amounting to refusing meeting at all.

If in node (4) player i is chosen by Nature as the proponent (and player

j as the respondent), then in node (5) with probability ρji ∈ [0, 1] she offers

player j a payoff equal to vij−θji . θki and ρki are the corresponding values in

a negotiation with k. In order to avoid open-set technical problems, and also

save in notation, we assume that in node (6) the respondent accepts with
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probability one any offer above or equal to her continuation value. That is

why we have chosen to not include these decisions in the description of a

strategy. As we will show below, this is innocuous and in particular does not

rule out the possibility of delay in case of indifference.11 Again, note that

in line with the restriction to stationary strategies, we implicitly assume the

answer to invitations to negotiate in node (3) and the offer in node (5) do

not depend on who made the invitation to meet or who answered to that

invitation, but rather only on the identity of the partners in the meeting.

The next result concerns the non-cooperative implementation of the

PSBN.

Proposition 2 For δ sufficiently close to 1, a stationary, subgame perfect

equilibrium of Φ(δ) exists, in which an agreement is reached in the first

period. Moreover, in any selection of stationary, subgame perfect equilibria,

the probability that the game ends in agreement between players i and j

converges to pij of the PSBN for any i, j, and expected payoffs also converge

to the payoffs, T , of the PSBN as δ goes to 1.

The proof can be found in the Appendix.

As we advanced, this proposition is the main result of this section. In

particular, it determines that in any stationary SPE, the payoffs in the

bilateral-negotiation phase of Γ(δ, α), as δ → 1, are well defined. More-

over, it shows that Φ(δ) implements the PSBN as a solution to the three-

player/three-cake problem.

Remark 1 As δ −→ 1, Φ(δ) implements the PSBN .

Once we are provided with this result, it is straightforward to show that

Γ(δ, α) implements the R−solution as δ → 1. We do so by analyzing the

11 Indeed, apart from open-set issues, in a SPE there could be indifference between
accepting and rejecting a partner’s offer only if the sum of the continuation values for both
partners is equal to what they have to share. In this case, the fact that the proponent can
choose any value ρ in [0, 1] already allows for any probability of delay.
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game bΓ(δ, α;x) for arbitrary x ∈ R3. Naturally, we restrict attention to x
so that x1 + x2 + x3 ≤ V .

Proposition 3 For any α, there is a unique stationary, subgame perfect

equilibrium of bΓ(δ, α;x) where players reach an agreement in the first period
and equilibrium payoffs are continuous for δ, α > 0. Moreover, as δ goes

to 1, equilibrium payoffs converge to the NBS of the tree-player game with

disagreement payoffs x.

The proof for Proposition 3 can be found in the Appendix. Thus, as

δ −→ 1 equilbrium payoffs of Φ(δ) are arbitrarily close to the expected

payoffs of the PSBN , T, and the unique equilibrium of bΓ(δ, α;x = T) is
arbitrarily close to the R−solution. Since this latter equilibrium is contin-

uous in x, we conclude that as δ −→ 1 any subgame perfect, stationary

equilibrium of Γ(δ, α) is arbitrarily close to the R−solution.

Corollary 1 As δ −→ 1, Γ(δ, α) implements the R−solution for any α.

Note that α can be as small as desired. It may even vanish in the limit,

as long as it does so at a speed less than the speed at which δ −→ 1.

Thus, Propositions 2 and 3 show that a simple, yet flexible bargaining

protocol exists whose asymptotitc outcome is as predicted by theR−solution.

Although we take a different approach and focus on another set of ques-

tions, some of our results are roughly consistent with those of Compte and

Jehiel (2010). In particular, if we restrict ourselves to the class of games with

V = v12, and players start the game in the bilateral negotiations phase, then

our protocol implements and efficient outcome only if the core is not empty

(the game lies in Regions 1 or 2). This is in line with their main result. On

top of that we identify which sort of inefficiency we should expect otherwise.

When we consider the entire game, the feature that generates an efficient
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outcome, even for games with an empty core, is the possibility that trilateral

negotiations may irreversibly come to and end.12

4 Properties of the R−solution

In this section we study the properties of the R−solution by discussing its

relation with the two main single-valued solution concepts in cooperative

game theory, its inclusion relation to set value concepts and geometrical

properties, and then the internal consistency rationale behind its interpre-

tation as a generalization of the NBS.

4.1 The R−solution, the core, and the bargaining set

We are mainly interested in the relationship between the core and the bar-

gaining set (of the grand coalition), BS. The following simple lemma simpli-

fies the ensuing discussion.

Lemma 1 For three-player, superadditive TU-games, the bargaining set of

the grand coalition coincides with the core if the latter is not empty. If the

core is empty, then the bargaining set of the grand coalition is a singleton.

The proof of this folk lemma is given in the Appendix. This lemma

allows us to consider only the relationship between the R−solution and the

BS.

Proposition 4 The R−solution belongs to the bargaining set (for the grand

coalition) and so to the core if the latter is not empty.

12This feature does not "impose" that all coalitions are relevant in the game, as Compte
and Jehiel (2010) argue that other protocols in the literature do. In particular, coalition
(2,3) is irrelevant in Regions 1 and 2, and coalition (1,3) is irrelevant in Region 1. Thus, the
PSBN and the protocol for bilateral negotiations do satisfy the outside option principle.
However, unlike Compte and Jehiel (2010), for games in which V > 2

3
v12 the R−solution

and the entire bargaining protocol does not satisfy the outside option principle, since
bilateral coalitions do matter. The reason is that, in the spirit of Harsanyi (1959), our
concept and bargaining protocol treat the grand coalition differently from the rest.
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Proof. First, we study the core. An element of the core is a positive

vector (x1, x2, x3) such that: (i) x1 + x2 + x3 = V , (ii) xi + xj ≥ vij for all

i, j, and (iii) xi ≥ 0, for all i. Adding the three conditions (ii), we obtain

x1 + x2 + x3 ≥ v12+v13+v23
2 , which combined with condition (i) gives the

condition for the core not to be empty:

V ≥ v12 + v13 + v23
2

. (2)

When v12 ≥ v13 + v23, i.e., in Regions 1 and 2, this is satisfied. It is then

immediate to check that the R−solution satisfies (i), (ii), and (iii) in Regions

1 and 2, so that in these regions the R−solution belongs to the core and then

to the BS. In Region 3 the core may be empty; i.e., (2) may not hold. Thus,

we will show that the R−solution belongs to the BS. We already know that

in Region 3 Ui =
V+vij+vik−2vjk

3 . Since Ui ≥ 0 for all i, and since the grand

coalition cannot be part of an objection, we need only consider objections

that use two-player coalitions. Thus, consider an objection of i against j.

That is, consider a division of vik, x = (xi, xk) where xi + xk = vik, such

that xi > Ui, and xk > Uk. We show that there is a counter-objection of j,

that is, a division y = (yj , yk) of vjk where yj + yk = vjk, such that yj ≥ Uj

and yk ≥ xk. Consider in particular yj = Uj , so that yk = vjk − Uj . If

xi > Ui, then xk = vik − xi < vik − Ui. But then

yk − xk > vjk − Uj − (vik − Ui) = 0.

Thus, if x is an objection then y is a counter-objection. QED.

The core is always non empty in Regions 1 and 2. In Region 3, when

V < v12+v13+v23
2 , the core is empty and the BS is a singleton. Since the

R−solution belongs to the BS, we conclude that the R−solution coincides

with the BS, and as well with any selection or subset of the BS.

The R−solution satisfies some interesting geometric properties, in par-

ticular when V = v12. That is, when the three-person game simply consists

of three alternative bilateral trades.
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Proposition 5 If V = v12, the R−solution coincides with the selection of

the most egalitarian allocation in the bargaining set. Thus, it also coincides

with the selection of the most egalitarian allocation in the core, when the

core is not empty.

Proof. Note that U1 ≥ U2 ≥ U3. Thus, a more egalitarian allocation

would require increasing the payoff of player 3 or, at least, increasing the

payoff of player 2 by reducing the payoff of player 1. We show first that in

Region 1 and Region 2 any allocation x in the BS or, equivalently in these

regions, in the core assigns a payoff x3 = 0. Assume otherwise x3 > 0. Then

x1+x2 = v12−x3 < v12, so that the allocation would not be in the core. This

immediately proves that the R−solution is the most egalitarian allocation

in the BS for Region 1. Now suppose we are in Region 2 and that there is an

allocation x which is more egalitarian than the R−solution. Since x3 = 0,

this implies that x2 > v12− v13, so that x1 + x3 = v12 − x2 < v13, thus

violating the conditions for x to be in the core. The R−solution is clearly

the most egalitarian allocation in the BS in Region 2. Finally, in Region 3

the core is empty, so that the BS is a singleton. Thus, the R−solution is

the only allocation in the BS. QED

Therefore, the R−solution is the most egalitarian among the stable (in

the sense of Aumman-Maschler) allocations. That is, the most egalitarian

among the allocations that cannot be blocked in the sense of the (grand coali-

tion) BS. When V > v12, the R−solution "distributes" the excess V − v12

equally among all players. In that sense, the R−solution treats all players

as equally as is compatible with their relative strength in bilateral negoti-

ations, but does not compensate weaker players when the grand coalition

adds surplus.13

13Note that, in regions 1 and 2 and for V = v12, the disagreement point T is on the
efficient frontier, and so coincides with the R−solution. In Region 3 this is not the case,
but the R−solution for the general case V > v12 lies on the segment connecting T with
the R−solution for V = v12.
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4.2 The R−solution, the Shapley value, and the nucleolus

It is well known that the Shapley value or any other probabilistic value is

not necessarily in the core or the BS.14 This is the first difference between

the R−solution and the Shapley value. In fact, they coincide only at two

points of the parameter space: v13 = v23 = 0 and v13 = v23 = v12.15 For

the rest of the parameter space, the comparison is straightforward and some

regularities can be noticed. With respect to the Shapley value, according to

the R−solution: (i) Player 3’s payoff is always lower, (ii) Player 2’s payoff

is lower if and only if v13 is sufficiently high, (iii) Player 1’s payoff is lower

if and only if both v13 and v23 are sufficiently small.16

A further difference between the two concepts is well illustrated by refer-

ence to the standard axioms in cooperative game theory. Indeed, the Shapley

value can be characterized as the only value that satisfies the axioms of ef-

ficiency, symmetry, dummy player, and additivity (see for instance Winter,

2002). It is straightforward to check that the R−solution also satisfies effi-

ciency, symmetry, and the dummy axiom. Therefore, the R−solution must

violate the additivity axiom. Formally, if (N, v) and (N, v0) are two games

with solutions U and U 0 respectively, and we consider the game (N, v00)

where v00(Z) = v(Z) + v0(Z) for all Z ⊂ N , it may be that its R−solution

U
00
does not satisfy U

00
i = Ui + U 0i .

We will argue that when interested in simultaneous, bilateral negotia-

tions, such violation is a strength of the concept rather that a weakness.

14As shown by Weber (1988), a probabilistic value is efficient only if it is a random-
order value, and in our superadditive setting efficiency is a condition for an allocation to
be in the core. The set of all random-order values contains the core, but no single one is
"always" contained in the core, even if we restrict attention to three player games.
15 In the first point (v13 = v23 = 0) the R−solution coincides with the NBS of the game

for players 1 and 2. In this sense, both the Shapley value and the R−solution are gener-
alizations of the NBS for three-player pure bargaining games.
16This discussion implies that the outcome predicted by the Shapley value does not

always Lorentz dominate the outcome predicted by the R−solution. However, if we com-
pute, say the variance of the outcomes, the Shapley value is always less disperse than the
R−solution. In this sense, the Shapley value is more egalitarian.
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Example 1 One buyer, B, can trade with two potential sellers, S and

E. There are two goods and the buyer demands one unit of each. In the

production of the first, S has a cost advantage, so that v(B,S) = 1 and

v(B,E) = α ∈
¡
1
2 , 1
¢
, whereas in the production of the second it is E who

has the cost advantage, so that v0(B,E) = 1 and v0(B,S) = α. According to

the R−solution, E obtains 0 in the first game and 1−α, in the second. The

game v00 = v+ v0 satisfies v00(B,E) = v00(B,S) = 1+α, and v(B,S,E) = 2.

Additivity implies that player E, for instance, should still fetch 1−α in

game v00. On the contrary, in v00 the R−solution predicts that her payoff is

one third of that amount. Note that additivity amounts to assuming that

the negotiations over the two goods are conducted independently. Thus,

by imposing additivity, as the Shapley value does, we would be implicitly

allowing sellers to commit to negotiate over each of the two goods only

through independent agents. These agents would not listen to anything

related to the other good. The R−solution does not presume any ability

of any party to preclude the two negotiations to interact, and so does not

assume such commitment power for any player.17,18

The other main single-value solution concept is the nucleolus. Like the

R−solution, the nucleolus is a selection of the BS, and as such also be-
17 In the previous example, the reader may conclude that the fact that S may also supply

the good for which it has a competitive disadvantage is a handicap. This is not the case.
Consider the game v = v00 except that v(B,S) = 1. In this case, S’s payoff is still a
third of 1 − α in the R−Solution. Thus, the R−solution, contrary to the Shapley value,
implicitly postulates that S has no commitment device stronger than simply this sort of
"burning the ships": destroying one’s ability to deliver what is not going to be delivered.
As this example shows, this is in particular not stronger but weaker than schemes like
delegation to independent agents.
18Young (1985) offers another well known axiomatization of the Shapley value. Young

proves that the Shapley value is the only efficient and symmetric solution that satisfies
monotonicity. Monotonicity requires that, if i’s marginal contribution to every coalition
in a game (N, v) is higher than in another game (N, v0) then i’s payoff is higher in the
former. In the one buyer, two seller example, monotonicity means that if, say, a technical
innovation reduces one of the seller’s cost, this seller’s payoff should increase no matter
how the innovation affects the cost of the rival seller. That is, even if the cost of the rival
is reduced much more. Evidently, this is something we would not like to impose on our
prediction for the example.
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longs to the core, when the latter is not empty. Moreover, the nucleo-

lus is also a selection of the kernel, itself a subset of the BS. Thus, by

Lemma 1, when the core is empty the four concepts, BS, nucleolus, ker-

nel, and R−solution, coincide. When the core is not empty, however, the

two concepts are in general different. Assume v12 = V , and assume that

we are in Regions 1 or 2, where the core is not empty. The nucleolus is

(x1, x2, x3) =
¡
1
2(v12 + v13 − v23),

1
2(v12 + v23 − v13), 0

¢
.19 This differs from

the R−solution, and in particular, as Proposition 5 states, it is less egalitar-

ian than the R−solution. That is, in these cases the nucleolus treats player

3 as the R−solution, but it treats the stronger player 1, more favorably.

4.3 Consistency and the NBS

The relationship between the Shapley value, the nucleolus (or kernel, in the

games we are considering) and the R−solution, on the one hand, and the

NBS, on the other hand, is perhaps best illustrated in the context of the

internal consistency requirement first invoked by Harsanyi (1959). Limiting

the discussion to three player games, internal consistency requires that, if

x = (x1, x2, x3) is the solution of the game (N, v), then the solution to the

reduced game for any pair of players {i, j} is precisely (xi, xj). Here the

reduced game for players {i, j} should be interpreted as a two-player game

( bN, bvij) where bN = (i, j), and bvij( bN) = xi + xj . Now, different concepts of

internal consistency may be defined that differ in the way the values bvij({i})
and bvij({j}) are chosen. Harsanyi (1959) himself, and later Hart and Mas-
Colell (1989) have shown that the Shapley value satisfies internal consistency

if these values are chosen in a particular way; and Sobolev (1975) and Peleg

(1986) have proved the same for the nucleolus and the kernel if they are

chosen in a different way.

A solution concept satisfying internal consistency so that (xi, xj) is the

19See Leng and Parlar, 2010.
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NBS of ( bN, bvij) may be regarded as a generalization of the NBS. Thus, ac-
cepting Harsanyi’s internal consistency requirement, the discussion about

the right generalization of the NBS boils down to a discussion of the appro-

priate values bvij({i}) and bvij({j}) as disagreement payoffs in the negotiation
of i and j. We argue that both proposals mentioned could only be generated

by inconsistent beliefs, just like in the solution concepts proposed by Ben-

nett (1997). Let us focus on the simple case where V = v12, and vi = 0 for

all i. Peleg (1986) proposes that bvij({i}) = vik−xk, and bvij({j}) = vjk−xk.

Thus, in such a reduced game players i and j negotiate about the division

of xi+xj , using as disagreement payoffs vik−xk and vjk−xk. This amounts

to both players i and j expecting that if their negotiation breaks down they

will be able to bribe player k to "trade" with them by offering her what she

would get in the grand coalition, and keep the rest of what the two-player

coalition could make. These disagreement payoffs are mutually incompati-

ble, since players i and j cannot both form a coalition with player k. In that

sense, the beliefs that sustain these disagreement payoffs are inconsistent.

The same conclusion applies to the internal consistency criterion used

by Hart and Mas-Colell (1989). Their alternative definition of the reduced

game has bvij({i}) = vik − vik
2 and bvij({j}) = vjk − vjk

2 . Once again, this

amounts to players i and j each expecting an agreement with player k (with

probability one). The only difference is that in this case, player k is not

expected to obtain xk, but the NBS of the two-player game in isolation.

That is, players i and j expect to obtain vik
2 and vjk

2 when they form a

coalition with player k, as the alternative to their own agreement in the

reduced game.

The R−solution is also internally consistent when defining disagreement

points as bvij({i}) = Ti.20 Moreover, these disagreement points are the result

of consistent beliefs. Indeed, what motivates these disagreement payoffs is

20Although we have defined the R−solution only for three-player games, it is clear the
analogous solution for two-player games is the NBS.
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the belief, of all players, that the threat for each player that disagrees with

the division of surplus in the grand coalition is to revert to (simultaneous)

bilateral negotiations. All players share beliefs about the outcomes of such

bilateral negotiations.

Are there ways to reconcile the more standard solution concepts, Shapley

value and nucleolus, with internal consistency and consistent beliefs of this

sort? Answering this question positively requires us to specify bvij({j}) as
the expectation of outcomes compatible with the coalition structure of the

game, taken with respect to a well specified probability distribution over

such outcomes. We claim this is an exercise that may shed new light of such

important solution concepts, and so is worth exploring.

5 Concluding remarks

In the previous sections we have restricted attention to games in charac-

teristic form, in which only one bilateral coalition can form. While some

economic models fit in such a set of games perfectly,21 others do not. At

this point is vital to look ahead and discuss how to extend the R−solution

to a broader class of games. We first discuss an example due to Horn and

Persson (2001), where bilateral agreements generate externalities. We argue

the R−solution can also be applied to this type of games (partition func-

tion form) by simply reinterpreting vi. Moreover, in this example the grand

coalition cannot form and hence in this case the natural solution concept

is the PSBN . Next, and in the context of an example due to Hart and

Moore (1990), we show how to extend the R−solution to cases where bilat-

eral trades are not mutually exclusive. Finally, we briefly discuss the kinds

of problems that arise in the study of games with more than three players.

21One particular example is the analysis of exclusive contracts conducted in Segal and
Whinston (2000). In a previous version of this paper we discussed how the application of
the R−solution alters the conclusions of this model.
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5.1 Coalitional externalities

Horn and Persson (2001), HP, present a model of endogenous merger for-

mation. Here we focus on their example (Section 2.1) that posits a market

initially populated by three oligopolistic firms. Any pair can merge but full

monopolization is prohibited. Although firms are symmetric in the status

quo, the synergies generated by alternative mergers are asymmetric. Firms’

profits in the no merger case are normalized to 0. Profits of the firm result-

ing from the merger between firms i and j, and the non-merged firm k, are

denoted by πij and πk, respectively. They are:

π12 = 70, π3 = 50,

π13 = 100, π2 = 0,

π23 = 90, π1 = 5.

In previous sections we defined the R−solution for games in character-

istic form, where the value of a coalition is independent of the agreements

reached by players not included in the coalition. However, in HP the value

of one-player coalitions does depend on whether or not the other two players

actually form a coalition (merge). Thus, this model can be described as a

game in partition function form (Lucas and Thrall, 1963). In a three-player

game, we need to specify what player i can obtain if no coalition is formed,

wi
{{i},{j},{k}}, and what player i obtains if the other two players do form a

coalition, wi
{{i},{j,k}}. The definition of the R−solution already takes into

account possible externalities. The value of an individual coalition plays a

role only in the definition of the disagreement payoffs in bilateral negotia-

tions, tiji and tiki . These values are obtained as a probability distribution

over the events that can be expected as an alternative to i forming a coali-

tion with j or k, respectively. The only such event that has i standing alone

is the formation of coalition {j, k}. Thus, only wi
{{i},{j,k}} matters, and then
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vi should be interpreted as this value.22 Summarizing, the PSBN and the

R−solution defined for games in characteristic form can also be applied to

games in partition function form, simply by substituting the worth of indi-

vidual coalitions, vi, with the worth of individual coalitions conditional on

the other two players forming a coalition, wi
{{i},{j,k}}.

As recognized by HP, in this context side payments between merging

firms and non-merging firms are unlikely to be feasible. Thus, the appro-

priate solution concept for this game is not the R−solution but the PSBN .

In HP’s example, the net surplus created by each merger is:

π12 − π1 − π2 = 65,

π13 − π1 − π3 = 45,

π23 − π2 − π3 = 35.

Thus, the most efficient merger (from the point of view of firms’ profits)

is the one between firms 1 and 2, and the game lying in Region 3. As a result,

and in contrast to the conclusion reached by HP, there is a probability that

an inefficient merger takes place. In fact, conditional on being part of the

successful coalition, and according to the PSBN , players obtain: u1 = 30,

u2 = 40, u3 = 60, and the probability that the merger between 1 and 2 is

successful is given by:

p12 =
(u1 − π1) (u2 − π2)P3

i<j,i,j=1 (ui − πi) (uj − πj)
=
21

34
.

5.2 Non-exclusive bilateral trades

Hart and Moore (1990), HM, study how the allocation of property rights

over assets affects the ex-post relative bargaining position of different play-

ers, which in turn determines ex-ante incentives to undertake asset-specific

22Myerson (1977) extended the Shapley value for partition function form games. In his
extension, player i’s payoff depends on both wi

{{i},{j},{k}} and wi
{{i},{j,k}}.
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investments. In their famous introductory example, there are three players,

the tycoon, the skipper and the chef, and one asset, the yacht. The chef

is able to offer a service in the yacht worth x to the tycoon. Similarly, the

skipper is able to offer a service in the yacht worth y to the tycoon. Suppose

that x is the deterministic result of costly investment, but y is an exogenous

parameter. Hence, there are two possible trades and they are compatible

(the tycoon can enjoy a dinner in the yacht and sailing simultaneously).

The game is composed of three stages. In the first, property rights over the

yacht are allocated. The value of these two potential trades can only be

realized if the yacht is owned by one of the players engaged in the trade. In

the second stage, the chef chooses x, and in the third, given the values of

(x, y), players engage in bargaining. The allocation of property rights that

optimize investment incentives will depend on the predicted outcome of the

bargaining game.

The R−solution (as presented in Section 2) cannot be used in this exam-

ple, since it was defined only for games where bilateral trades are mutually

exclusive. In an article-in-progress, we extend the definition to more gen-

eral cases, including this example by HM with compatible bilateral trades.

The main generalization is the definition of feasible events, a subset of the

power set of {(1, 2), (1, 3), (2, 3)}. An event describes the set of bilateral

agreements reached. For instance, the event [(1, 2), (1, 3)] corresponds to 1

agreeing to trade with 2 and 1 also agreeing to trade with 3. If we repre-

sent with square brackets the events, in this paper the set of feasible events

was {[(1, 2)], [(1, 3)], [(2, 3)]}. In the example of HM, the set of events is

{[(1, 2), (1, 3)], [(1, 2)], [(1, 3)], [(2, 3)]}). That is, it contains the new event

[(1, 2), (1, 3)]. In such a case, the extended �−PSBN would still be a triplen
uiji (�) , t

ij
i (�) , pe (�)

o
except that pe (�) is a probability distribution over

the set of feasible events (four). For our present purpose, let us keep the no-

tation pij (�) for the event [(i, j)], and add p (�) to denote the probability of

33



event [(1, 2), (1, 3)]. Then, condition 1 in the definition of �−PSBN remains

unchanged. For condition 2 we need to introduce the concept of mutually

exclusive pairs. Pairs (i, j) and (k, l) are mutually exclusive if there is no

feasible event that contains both. In the previous sections, all three pairs

mutually excluded each other. In the present example, however, (1, 2) and

(2, 3) are mutually exclusive, as (1, 3) and (2, 3), but (1, 2) and (1, 3) are

not. The relation is symmetric. Then condition 2 in the definition of an

�−PSBN implies that tiji (�) equals the expected payoff for player i in pairs

that are mutually exclusive with (i, j), conditional on events that do not

contain (i, j). In the present example, dropping the index � for clarity,

t1ii =
p23u

23
i

1− (p+ p1i)
,

for i = 2, 3. On the other hand, since (1, 3) and (1, 2) are not mutually

exclusive, and 1 is not in the pair (2, 3), we have t1i1 = 0. Also,

t23i =
(p+ p1i)u

1i
i

1− p23
,

for i = 2, 3.

Finally, condition 3, still dropping the index �, should now include p12+

p13 + p23 + p = 1 and the probability of a trade between players i and j

cannot be higher than 1 − � for all i, j.23 But now, the probability of an

event should not be larger than �, unless all players included in the pairs of

the event obtain in that event a higher payoff than they do in the rest.

With this definition of an �−PSBN , we can define the PSBN and the

R−solution for this more general case, just as in Section 2. It can be shown

that if the two most efficient trades {(1, 2) , (1, 3)} can occur simultaneously

and V = v12 + v13, then the R−solution exists and is unique. In particular,

p = 1, U1 = v12+v13
2 , and Ui =

v1i
2 , for i = 2, 3, independently of the value

of v23. Hence, in HM’s specific example, since v23 = 0, the R−solution
23 In particular, p+ p12, p+ p13, and p23 must all be lower or equal than 1− �.
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and the Shapley value (the solution concept used in HM) offer the same

prediction. Thus, under the R−solution, incentives to invest in this partic-

ular example do not change if we transfer property rights from the agent

that takes investment decisions (the chef) to the indispensable agent (the

tycoon). However, it is important to bear in mind that, like in the case of

mutually exclusive bilateral trades, with more than one compatible bilateral

trade, the R−solution and the Shapley value coincide only for very specific

parameter values (in our restricted set up they only coincide if v23 = 0).

5.3 More than three players

The study of games involving more than three players poses new questions

that are not part of the current analysis. One set of such questions has to

do with the hierarchy of coalitions. In this paper we have assumed that if

the grand coalition breaks down then only one trade between two players

can be realized. The third player has to be in a one-player coalition. Thus,

success in one bilateral coalition uniquely defines a partition of players. This

introduces a natural hierarchy in the set of coalitions, and it has allowed us to

discuss our solution concept in terms of which bilateral coalition "succeeds".

However, if n > 3 and the grand coalition fails, this hierarchy is absent

even if we impose the condition that only disjoint coalitions can form. The

alternative to the grand coalition may be a n−1−player coalition, excluding

the nth player, but it may also be n
2 disjoint two-player coalitions (in case n

is an even number), or many other partitions. Specifying the disagreement

points of a particular player in an arbitrary coalition can still be done, but

it clearly involves a higher degree of complexity. For these reasons we leave

the general formulation and analysis of n−player games for the future.

However, extending the R−solution to selected specific kinds of games

involving more than three players can be rather straightforward, and indicate

the direction for a generalization to more players. For example, consider the
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four player example discussed by Benett (1997), where only the following

bilateral coalitions can generate a positive surplus: v12 = 40, v13 = 34,

v24 = 34, v34 = 20. The value of all other coalitions is 0. We may consider

this an example with two unit-demand buyers and two unit-supply sellers

and also should define V = v13 + v24 = 68. Thus, each player can form a

bilateral coalition with two other alternative players, and two simultaneous

coalitions are feasible as long as they are disjoint. In line with the previous

subsection, we can now define events, which correspond to feasible partitions

of the set of players. In this case, there are the following events:24 in event

(a), which occurs with probability pa, coalitions {1, 3} and {2, 4} form ; in

event (b), which occurs with probability pb, coalitions {1, 2} and {3, 4} form;

and then there are events where only one two-player coalition forms, which

we denote (1, 2) , (1, 3) , (2, 4) , (3, 4) and that occur with probabilities p12,

p13, p24, and p34 respectively. Note there are now coalitions that belong to

two different events. For instance, {1, 3} belongs to event (1, 3) and to event

(a). Let E be any set of events and denote by p(E) the total probability of

that set of events. Consider the following modification of condition 3 in the

the definition of an �− PSBN .

30) An event e ∈ E has probability larger than �p(E) only if every player

i, belonging to a coalition other than {i} in event e, weakly prefers her payoff

in that event to her payoff in any other event in E.

When E is the set of all events, we are back to our original condition.

Thus, this is simply a strengthening of condition 3) in our definition. 25

It can be shown (details available upon request) that the unique PSBN

includes pa = 1, u131 = u121 = u242 = u122 = 20, u133 = u244 = 14, u343 = u344 = 0.

There is no role for the grand coalition, and as a result the R−solution

predicts the following payoffs: U1 = U2 = 20, U3 = U4 = 14. This result
24Once again, we ignore the finest partition (no agreement at all) but considering it

would not introduce any change of substance.
25 It can be checked that the �−PSBN specified in the existence proof still satisfies this

more stringent condition.
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is analogous to the prediction of the R−solution for three-player games in

Region 2. In other words, the efficient set of coalitions forms, and players 1

and 2 are able to jointly obtain the exact value of their outside opportunity.

In contrast, Benett (1997) predicts a higher payoff for players 1 and 2 (she

predicts U1 = U2 = 22). Such a division of surplus cannot be justified

on the grounds of purported consistent beliefs. Players 1 and 2 cannot

simultaneously claim a payoff of 22 in their negotiation with players 3 and

4 respectively, since the threat of breaking the negotiations and forming the

coalition (1, 2) would necessarily involve losses for both players.
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7 Appendix

7.1 Proof of Proposition 1:

First we propose an �−PSBN for the game (N, v) for � sufficiently small.
This will show existence. To save in notation, we will dispose of the (�)
index of the solution, and instead specify if we refer to the limit.

1) Let 12v12 ≥ v13.
1.a) If 12v12 > v13 (so that v12 ≥ v13 + v23 is also satisfied), consider

u121 = u122 = 1
2v12, and u

ij
i = 0 for all other values of i, j. Also, let p12 = 1−�,

p13 = p23 =
�
2 . Finally, let t

12
1 = t122 = ti33 = 0 and ti3i =

1−�
2−�v12 for i = 1, 2.

Note that lim�→0
1−�
2−�v12 =

1
2v12 > v13 ≥ v13. Thus, for � sufficiently small,

this satisfies the definition of an �− PSBN .
1.b) If 1

2v12 = v13 > v23, consider u121 = u121 = 1
2v12 (= v13), and

u232 = u233 = 0. Also, let p12 = 1 − � and p13 = 0, p23 = �. Then, t121 =
t233 = t122 = t133 = 0 and t232 = 1

2v12 > v23. To complete the definition of an
�− PSBN we need only t131 = (1− �)12v12, u

13
1 = 1

2(v13 + t131 − t133 ) = (1−
�
2)v13 and u133 = �

2v13.
1.c) If v13 = v23 =

1
2v12, consider u

12
1 = u122 = 1

2v12 (= vi3, i = 1, 2),

p12 = 1 − � and p13 = p23 =
�
2 . Then ti3i = (1−�)v12

2−� < vi3, i = 1, 2. Also,
consider u133 = u233 = A > 0. Thus, ti33 , i = 1, 2, will have to satisfy:

ti33 =
�A

2− �
, and

A =
1

2

µ
vi3 −

(1− �)v12
2− �

+
�A

2− �

¶
,

and solving for A given that 12v12 = vi3, we obtain

A =
�vi3
4− 3� ,

which is smaller than vi3 for small �. Note that for � small ti33 + ti3i < vi3,
i = 1, 2. Also, note that given these values for ui3i , we should define t

12
1 =

t122 =
�
2
(vi3−A)

� = (v12−2A)
4 , and t121 + t122 < v12. This satisfies the definition

of an �− PSBN .
2) If v13 > 1

2v12 and v12 > v13+v23, then consider u131 = v13, u121 = v13+a,
and u133 = u232 = u233 = 0, where a > 0 is to be obtained later. Thus,
u122 = v12 − u121 > u232 . Consequently, let p23 = �. Then p12 = 1 − � − p13.
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Finally, u232 = u233 = 0 implies that t122 = t133 = 0, and we can then check
that

t121 + t122 =
p13

�+ p13
v13 < v12,

whereas

t131 + t133 =
p12(v13 + a)

1− p13
,

which is smaller or equal than v13 if

a ≤ v13
�

p12
. (3)

We will propose a so that this is satisfied. In that case, a should also satisfy

v13 =
1

2
(v13 +

(1− �− p13)(v13 + a)

1− p13
) =

1

2
(v12 +

p13v13
�+ p13

)− a. (4)

We can solve the first equation for a and get a = v13
�
p12
. Thus, the condition

(3) is satisfied by a solution to the above system. Note that in such a solution
a converges to 0. This is a system with two unknowns and two variables.
(For positive �, indeed a > 0.) Also,

2�− p13
�+ p13

=
v12 − 2a

v13
,

so that p13 < �, so that condition 3 is satisfied. Is there a valid solution to
(4)? Substituting (3) with equality in the second equation of (4) we obtain
two solutions for p13, and one of them converges to zero:

p13 =
1

2

µ
1−

r
1− 6 �v13

v12 − v13
+ (

�v13
v12 − v13

)2 − �
(2v12 − v13)

v12 − v13

¶
.

We can also check that for small but positive � this expression is positive.
Indeed, 1 >

q
1− 6 �v13

v12−v13 + (
�v13

v12−v13 )
2 − � (2v12−v13)v12−v13 , since 1 >³q

1− 6 �v13
v12−v13 + (

�v13
v12−v13 )

2 − � (2v12−v13)v12−v13

´2
given that the right hand

side is smaller than

1− 6 �v13
v12 − v13

+ (
�v13

v12 − v13
)2 +

µ
�
(2v12 − v13)

v12 − v13

¶2
,

and the two last terms approach zero at the speed of �2, whereas the second
approaches zero at the slower speed of �.

3) If v12 ≤ v13 + v23, and v23 > 0, then propose uiji = uiki = ui, for
all i, j, k, with ui + uj = vij for all i, j. This is a system of three linear
(independent) equations with solution ui =

vij+vik−vjk
2 . These values are

strictly positive. Also, tiji =
pikui
1−pij . Finally, p should satisfy

ui =
1

2
(vij +

pikui
pik + pjk

− pjkuj
pik + pjk

)
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for all i, j, k. Taking into account ui + uj = vij , these equations can be
written as

−p13u2 + p23u1 = 0,

−p12u3 + p13u2 = 0,

−p12u3 + p23u1 = 0.

Note that the third equation is simply the sum of the previous two. That
is, there are only two linearly independent equations. Thus, two of these
equations plus p13 + p23 + p23 = 1, forming a linear system with a unique
solution. The solution is a probability distribution, where all three variables
take strictly positive values. Indeed, the first two equations can be written
as p13

u1
= p23

u2
and p12

u2
= p13

u3
, so that all solution vectors to these two equations

have either all positive or all negative components. And no solution with
all negative components satisfies the equation p13 + p23 + p23 = 1. Finally,
note that tijj + tiji =

pjkuj
pjk+pik

− pikui
pjk+pik

, so that since both uj , ui < vij , indeed

tijj + tiji < vij . Thus, we have a �− PSBN for � sufficiently small (� < p23
obtained above).

If v23 = 0 and so v12 = v13 any p12, p13 < 1 − � so that p12 + p13 = 1,
with u2 = u3 = 0, and u1 = v12, and correspondingly t121 = t131 = v12 and
tiji = 0 otherwise, form a �− PSBN .

This concludes the proof of existence. Next, we can simply check that if
we select the � − PSBN that we have just characterized for each possible
values of vij for all ij, then the lim�→0 {u(�), t(�), p(�)} is as stated in the
Proposition. (There is an exception, when v23 = 0 and v12 = v13, in which
case the limit is not unique in probabilities, yet is in all outcome-relevant
values.) Thus, we only need showing that there is no other triple {u, t, p}
that is the limit of a sequence of �−PSBN as � approaches 0. First, however,
we will prove a handy result.

Lemma 2 In a � − PSBN , cycles cannot occur. That is, it cannot be
that uiji ≥ uiki ; u

jk
j ≥ uijj ; u

ik
k ≥ ujkk for some values of i, j, k. Moreover,

uiji = uiki ; u
jk
j = uijj ; u

ik
k = ujkk can only occur if v12 ≤ v13 + v23.

Proof of Lemma: Assume such a cycle with at least one strict in-
equality. First, assume that tiji + tijj ≤ vij for all ij. That requires u

ij
i =

1
2

³
vij + tiji − tijj

´
for all i, j, k. Substituting for vij = uiji + uijj , and also

substituting for
tiji =

pik
1− pij

uiki (5)

we can write this expression as

(uiji − uijj )(1− pij) = piku
ik
i − pjku

jk
j (6)

Adding these three equations, for all three pairs, this implies

(uiji − uijj ) + (u
ik
k − uiki ) + (u

jk
j − ujkk ) = 0,
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that is, uiji +uikk +ujkj = uijj +uiki +ujkk ; this violates the inequalities defining
the cycle if there is one that is strict.

Second, assume that tiji + tijj > vij for some ij, but tiki + tikk ≤ vik,

and tjkj + tjkk ≤ vjk. This and the inequalities defining the cycle imply

uiji = uijj = uiki = 0, so that also u
ik
k = vik. Thus, equation (6) for the pair

jk becomes
(ujkj − ujkk )(1− pjk) = −pikvik.

Since pjk < 1, that implies ujkk ≥ ujkj . Note, however, that t
jk
j = 0, since

uijj = 0, so that ujkj ≥ ujkk . These two inequalities then imply both ujkj =

ujkk =
vjk
2 , and pik = 0. Since the inequalities that define the cycle include

uikk ≥ ujkk , then we must have vik ≥
vjk
2 . But substituting for u

jk
k =

vjk
2 and

pik = 0 in (5) corresponding to tikk , we also have that t
ik
k = pjk

vjk
2 <

vjk
2 ≤

vik. This contradicts that uikk = vik.
Third, assume that tiji + tijj > vij and tiki + tikk > vik for some ij and ik

but tjkj + tjkk ≤ vjk. That implies that u
ij
i = uijj = uiki = uikk = 0, which

implies that tjkj = tjkk = 0, so that ujkk =
vjk
2 > uikk , which contradicts the

inequalities that define the cycle.
Thus, the only cycle that may exist is uiji = uiki ; u

jk
j = uijj ; u

ik
k = ujkk ,

with tiji + tijj ≤ vij for all ij. But the system ui + uj = vij , for all ij has
a valid solution only in Region 3, and coincides with the one found above.
QED

Thus, an �− PSBN must satisfy:

uiji ≥ uiki ;u
jk
j ≤ uijj ;u

ik
k ≤ ujkk , (7)

and except for the � − PSBN in 3) above, at least two inequalities must
be strict. Also, given part three of the definition of � − PSBN , pik < �

unless uiji = uiki and uikk = ujkk . Thus, in any but the � − PSBN in 3)
above, pik < �. Thus, in a sequence that converges as �→ 0, we must have
lim�→0 pik = 0.

Consider such a sequence of � − PSBN ’s so that lim�→0 pij > 0 and
lim�→0 pjk > 0. From (7) and part three of the definition of � − PSBN ,
that implies for � small uijj = ujkj . Thus, since at least two inequalities need

to be strict, uiji > uiki and uikk < ujkk . These last inequalities imply that
ujkk + ujkj = vjk and uiji + uijj = vij . Also, as � → 0, pjk

pjk+pik
→ 1, and

pij
pij+pik

→ 1, so that applying part one of the definition of a �− PSBN ,

uijj = ujkj → uj =
1

2
(vij + uj) =

1

2
(vjk + uj) .

This cannot occur unless vij = vjk. In the latter case, uj = vij = vjk, which
implies both uiji and ujkk converge to 0, and so tiki + tikk converges to 0, in
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which case uiki converges to vik
2 > uiji for � small when vik > 0. This is a

contradiction unless vik = 0. But if vij = vjk, vik = 0, the limit of such a
sequence coincides with the �− PSBN in 3) above.

Thus, it must be the case that these two conditions hold: (i) lim�→0 pik =
0, and (ii) either lim�→0 pjk = 0 or lim�→0 pij = 0. But if lim�→0 pij = 0 then
lim�→0 pjk > 0, and this contradicts part 3 of the definition of an �−PSBN
since uiji ≥ uiki and uijj ≥ ujkj with at least one inequality. Thus, assume
that lim�→0 pik = lim�→0 pjk = 0. We consider two possible cases:

1) Assume that, in the limit, tjkj + tjkk > vjk. Other than in the trivial
case where vjk = 0, this requires that for � small the inequality is also
satisfied, so that for � small ujkj = ujkk = 0 = tijj . Thus, from (7), we must
also have that uikk = 0. Since only one inequality in (7) may be non strict,
and ujkk = uikk , we must have u

ij
i > uiki , and since u

jk
j = 0, we must also

have that uijj > ujkj . These two inequalities imply that u
ij
i +uijj = vij . Since

tijj = 0, we must then have that u
ij
i ≥

vij
2 . Thus:

1.a) If vij
2 > vik, since tiki converges to uiji ≥

vij
2 , then for � small we

must also have that tiki + tikk > vik, so that uiki = 0, and then tijj = tiji = 0,

and then uijj = uiji =
vij
2 . Note that t

jk
j ≤ uijj and tjkk = 0. Thus, for

tjkj + tjkk > vjk, it must be that
vij
2 > vjk. This requires that ij = 1, 2 and

also that we are in Region 1. Thus, the limit of such a sequence is the one
stated in the Proposition.

1.b) If vij
2 ≤ vik, as before, and if tiki + tikk > vik, then uijj =

vij
2 , and

since tikk = 0, this would imply that
vij
2 ≥ tiki > vik, which is a contradiction.

Thus, we must have tiki + tikk ≤ vik. Thus, since uiki = 0, we must have
uikk = vik. Since u

jk
k = 0, this contradicts the inequality uikk ≤ ujkk in (7) ,

unless vik = 0. In the latter case, since vij
2 ≤ vik, vij = 0 and we have a

contradiction with tjkj + tjkk = 0 > vjk.

2) Assume that tjkj + tjkk ≤ vjk in all the terms of the sequence as �
converges to 0.

2.a) If tiji + tijj ≤ vij , then

ujkj ≥ tjkj =
pij

pij + pik
uijj ,

where the right hand side converges to uijj . From, (7), u
ij
j ≥ ujkj . Thus,

the limit of any such sequence should satisfy lim�→0 u
ij
j = lim�→0 u

jk
j =

lim�→0 t
jk
j . That implies that lim�→0 u

jk
k = 0, and requires that vij ≥ vjk,

and lim�→0 u
ij
i = vij−vjk. Since ujkk ≥ uikk , then we also have lim�→0 uikk = 0.

But if lim�→0 u
jk
k = 0, then lim�→0 tikk = 0, whereas t

ik
i ≤ uiki . Thus, if vik >

vij − vjk, then lim�→0 tiki + tikk < vik and then lim�→0 uikk >
vik−(vij−vjk)

2 > 0,
which is a contradiction. Therefore, vik ≤ vij − vjk. Since lim�→0 tiki =
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lim�→0 u
ij
i = vij−vjk, then lim�→0 uikk = 0 = lim�→0 u

jk
k . Thus, lim�→0 uiki >

0, only if lim�→0 uiki = vij−vjk. In this case, we would have ui = lim�→0 u
ij
i =

lim�→0 uiki , uk = lim�→0 uikk = lim�→0 u
jk
k , and uj = lim�→0 u

ij
j = lim�→0 u

jk
j .

This equation, together with ui+uk = vik, ui+uj = vij uj +uk = vjk has a
solution only in Region 3 (vik = vij − vjk). Thus, if vik < vij − vjk, uiki = 0
for � small, so that tiki = 0, so that uijj ≥

vij
2 , and then vjk ≥ vij

2 . This is
Region 2, and the limit coincides with the one stated in the Proposition.

2.b) If tiji +tijj > vij , then u
ij
i (= uijj ) = 0, so that t

ik
i = 0, and since from

(7) uiji ≥ uiki , then uiki = 0. On the other hand, t
ik
k approaches 0 as � → 0,

and then tiki + tikk approaches 0, which contradicts uiki = 0 unless vik = 0.
Moreover, in this latter case tjkj = tjkk = 0, so that ujkj = ujkk =

vjk
2 , so that

ujkj > uijj , which contradicts (7).

7.2 Proof of Proposition 2

We first show existence of a stationary, SPE for δ close to 1. Note that in
equilibrium any offer/demand θji that is accepted with positive probability
needs to satisfy θji = vij − δxj , where xj is the equilibrium payoff of player
j, j = 1, 2, 3.

Assume we are in Region 1, where v12 ≥ 2v13. Then it is easy to check
that μ12 = μ21 = λ12 = λ21 = 1, with λ13 and μ13 arbitrary, θ

1
2 = θ21 =

2−δ
2 v12,

ρ12 = ρ21 = 1, (and ρji = 0 for any (i, j) 6= (1, 2) and, for instance, θ3i > vi3
and θi3 = 0 for i = 1, 2), is an equilibrium of the game.

Assume we are in Region 2 where v12 < 2v13 and v12 ≥ v13+v23. We will
propose an equilibrium where agreement will occur in period 1. We propose
μ12 = μ13 = μ21 = λ12 = λ13 = 1. Finally, λ31 =

3
2' for some (small) value

of ' to be determined. That means that players 1 and 2 will meet with
probability 1− 2

3λ
3
1 = 1−'. For that to be an equilibrium with agreement

in period 1, we require player 1 to be indifferent between meeting player 2
and meeting player 3, when she receives a first invitation to meet. That is,

1

2
(v13 − δx3 + δx1) =

1

2
(v12 − δx2 + δx1).

Indeed, the left hand side is the (equilibrium) expected payoff for player
1, conditional on meeting player 3, and the right hand side is her payoff,
conditional on meeting player 2. This is so since equilibrium offers must
satisfy θi1 = v1i − δxi and θ1i = v1i − δx1 for i = 2, 3. Thus, in such
equilibrium the following must be satisfied:

v13 − δx3 = v12 − δx2. (8)

Also, we consider an equilibrium where all offers are made and accepted
when player 1 meets another player, but only in this case. Equilibrium
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payoffs in that case must satisfy

x3 =
'

2
(v13 − δx1 + δx3),

x2 =
1−'

2
(v12 − δx1 + δx2),

x1 =
1

2
(v12 − δx2 + δx1).

If v12 > v13 these four equations have a (positive) solution:

x1 =
1

2(4− 3δ)((3− 2δ) (v13 + v12)−H),

x2 =
1

2δ(4− 3δ)((2− δ)(H + (v12 − v13)(3− 2δ))− 4 (1− δ)2 v12),

x3 =
1

2δ(4− 3δ)(2− δ)(H − (v12 − v13)(3− 2δ))− 4 (1− δ)2 v13).

' =
v12 + v13(1− 2δ)−H

2δ(v12 − v13)
,

where

H =
h
((v12 − v13)(3− 2δ))2 + 4v12v13 (1− δ)2

i 1
2
.

That is,

0 < ' <
1− δ

δ

2v13 − v12
v12 − v13

.

As δ approaches 1, the upper bound on ' tends to 0, and x1 approaches
v13, x2 approaches v12 − v13 and x3 approaches 0. Note that H > (v12 −
v13)(3 − 2δ), so that x1 < 3−2δ

4−3δv13 < v13 and x2 > v12 − v13 ≥ v23. Thus,
player 2 can never be tempted to negotiate with player 3. Since v12 < 2v13
then for δ sufficiently high, x1 > x2 and player 1 cannot be tempted either to
negotiate with player 3. Thus, we have an equilibrium with only completing
θj1 = v1j − δxj and θ1j = v1j − δx1, θij > vji otherwise, ρ1j = ρj1 = 1 and
ρ23 = ρ32 = 0, for these values of xj obtained. Finally, if v12 = v13 then
v23 = 0, and the solution to the above system of equations includes ' =
1
2 , x1 =

v12(2−δ)
4−3δ < v12, and x2 = x3 =

v12(4−5δ+δ2)
(4−3δ)(4−δ) > 0. As δ approaches 1

x1 approaches v12, and x2 and x3 approach 0. Moreover, we can complete
the description of equilibrium as above.

Now, assume that we are in Region 3, where v12 < v13 + v23. Then,
consider an equilibrium where all players are indifferent about meeting either
of the other two players, if they receive the first invitation to meet, and all
meetings end in agreement. That is, (8) still holds, but this time for all
pairs of players. These are three equations, but only two of them are linearly
independent. Let us define

pij =
1

3
(μij + μik)λ

j
i +

1

3
(μji + μjk)λ

i
j . (9)

45



(Note that μik + μjk = 1, so that pij ≤ 1.) Then, the payoffs should satisfy:

xi = pij(vij − δxj + δxi) + pik(vik − δxk + δxi).

Moreover,
p12 + p13 + p23 = 1. (10)

Thus, we have a system of six equations with six unknowns, the three values
p and the three values x. Let us denote by A = v12+v13−v23

2 , B = v12+v23−v13
2

and C = v13+v23−v12
2 . The system of equations has a solution:

x1 =
A(AB +AC − (2− δ)BC)

(AB +AC +BC)
, (11)

x2 =
B(AB +BC − (2− δ)AC)

δ (AB +AC +BC)
,

x3 =
C(AC +BC − (2− δ)AB)

δ (AB +AC +BC)
.

p12 =
(2− δ)AB − (AC +BC) (1− δ)

δ (AB +AC +BC)
,

p13 =
(2− δ)AC − (AB +BC) (1− δ)

δ (AB +AC +BC)
.

As δ approaches 1, these values are a valid solution, with all p positive. We
should set ρji = 1 and θ

j
i = vij − δxj , for all i, j. Also, we can recover values

μji and λji from the values pij . That is, solutions to (9) with these values of
the p’s that also satisfy λji + λki = 1 and μki + μji = 1, and similarly for all
players. We propose an equilibrium where μ12 = 1, and the other two players
are indifferent as to whom to make the first invitation to meet when they
are chosen by Nature to make this invitation. That requires that λ32 = λ31
and λ12 = λ13. Since λ

3
2+λ12 = 1, this amounts to requiring that λ

3
1+λ13 = 1.

Substituting the solution for the values of pij in (9), (letting λ
j
i = 1−λki for

all i and μki = 1− μji for i = 1 and 2) together with this latter equation, we
obtain a system with four equations with four unknowns: μ21, μ

1
3, λ

1
3 (= λ12)

and λ31. One of these equations is linearly dependent, so we can set, for
instance, μ21 = 1, and solve the system to obtain:

μ13 =
2p13 − p23
p13 + p23

=
C(2A−B) + 3(1− δ) (AC −BC −AB)

C(A+B)− 2(1− δ)AB
,

λ13 = p12,

λ31 = p13 + p23.

Recall that A ≥ B and, in Region 3, A < 2B, and then for δ large enough,
μ13 approaches

2A−B
A+B ∈ (0, 1). This completes the proof of existence.

In order to prove the convergence result, we need to show that as δ −→ 1
all equilibria result in outcomes x arbitrarily close to the ones we constructed
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in the first part of this proof. Before proceeding to the proof, we start with
a few helpful results:

Result 1: In a SPE a cycle, where i (weakly) prefers meeting j, who
(weakly) prefers meeting k, who (weakly) prefers meeting i, can only occur
when all players are indifferent between meeting the two possible partners.

Proof : Assume vlm ≥ δxl + δxm for all l,m = 1, 2, 3. When it is the
opponent’s turn to make an offer, i receives the same offer from both, j
and k: to keep δxi. Moreover, this is precisely i’s payoff if the partner,
j or k, decides to make no offer. Thus, preference could only come from
i being able to make a (weakly) higher, acceptable demand to j than to
k: vij − δxj ≥ vik − δxk. Thus, the cycle means vij − δxj ≥ vik − δxk,
vjk − δxk ≥ vij − δxi, and vik − δxi ≥ vjk − δxj , which is only possible if
all these inequalities hold with equality. Assume now that vik < δxi + δxk,
but vij ≥ δxj + δxj and vjk ≥ δxj + δxk. In this case, and by a similar
argument the cycle implies that vij − δxj ≥ δxi, vjk − δxk ≥ vij − δxi,
and δxk ≥ vjk − δxj . The first and third inequalities can be rewritten as
vij − δxi ≥ δxj and δxj ≥ vjk − δxk, so that again this can be possible
only with all three expressions holding with equality. Assume now that
vik < δxi + δxk and vjk < δxj + δxk and vij ≥ δxj + δxj . Thus, a cycle
implies that vij − δxj ≥ δxi, δxj ≥ vij − δxi, and δxk ≥ δxk, which again
implies that all three expressions hold with equality.

Result 2: In a SPE, if δxi + δxj < vij then ρji = ρij = 1.
Proof : The proof is trivial.
Result 3: In a SPE where δxi + δxj ≥ vij , if λ

j
i > 0 then xi = 0.

Proof : Suppose that λji > 0, and xi > 0. Then since δxi+δxj ≥ vij , we
have that the expected payoffs at step (4), if players i and j meet, are δxi
and δxj , respectively. Indeed, this is the payoff if no offer is made or if offers
are rejected, and also this is the highest offer each would get or the highest
demand each can make and (perhaps) be accepted. Since δxi < xi when
xi > 0, it must be that the expected payoff for player i at step (4) when
meeting player k is higher than δxi, and so λ

j
i = 0 is a profitable deviation

for player i at step (3).
We now proceed to prove the convergence result.
1) First consider an equilibrium where δxi + δxj < vij for all i, j, so

that in that equilibrium ρji = 1, for all i, j (and all offers are accepted with
probability one). In such equilibrium, when player i proposes to player j in
step 5, the proposal must be:

θji = vij − δxj , (12)

and therefore, player j expects to keep the same payment whether she is
proposed to by i or by k: δxj . Also,

1.1) Suppose that in such equilibrium all players, when they are chosen to
receive the first invitation to meet in step (2), are indifferent about accepting
or instead selecting to meet the other player. For player j to be indifferent
to meet i or k, we need θij = θkj ≡ θj . Therefore, equation (12) gives us
conditions for such equilibrium

v12 − θ1 = v23 − θ3; v13 − θ1 = v23 − θ2, (13)
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which already imply v12 − θ2 = v13 − θ3. As before, let pij be as defined in
(9), i.e., as the probability that the match (i, j) forms (and so, in this case,
agrees) in the first period (and in any subsequent period that is reached).
We also have that

p12 + p13 + p23 = 1. (14)
Finally, from the definition of xi, and substituting equation (12) for xi, we
have

vij − θj = δ

∙
pij
1

2
(vij − θj + θi) + pik

1

2
(vik − θk + θi)

¸
,

which using (13) can be written as

v12 − θ2 = δ (p12 + p13)
v12 + v13 − v23

2
,

v23 − θ3 = δ (p12 + p23)
v12 + v23 − v13

2
,

v13 − θ1 = δ (p13 + p23)
v13 + v23 − v12

2
.

This is a system of six equations with six unknowns, and its solutions
would satisfy x1 = (p12 + p13)

v12+v13−v23
2 . We know that player 1, condi-

tional on meeting any of her potential partners, player 1 expects to obtain
v12+v13−v23

2 . Let’s use the notation A,B,C as above. We can indeed solve
that system and obtain (11). For δ close to 1, all p’s are positive and smaller
than 1 only in Region 3, where v12 < v13+v23. Thus, for δ close enough to 1,
this equilibrium could exist only in Region 3, and pij and xi would coincide
with the values in the equilibrium we have obtained in the existence part of
the proof.

1.2) Now, suppose that (still δxi + δxj < vij for all i, j) player i strictly
prefers meeting player j rather than meeting player k when she is presented
with a first invitation to meet in step 2. Taking Result 1 into account, two
cases are possible without resulting in a cycle: either, a pair of players (say
i and j) exists that prefer meeting with each other, so that

vij − δxj > vik − δxk, (15)
vij − δxi > vjk − δxk;

or else, vij − δxi < vjk − δxk and vik − δxi = vjk − δxj . Adding these
latter two (in)equalities we contradict vij − δxj > vik − δxk. Thus, suppose
(15) holds. That implies that λki = λkj = 0 and that in turn requires that
μki = μkj = 0. Indeed, knowing that player j will certainly accept her first
invitation to meet, player i strictly prefers to make player j a first invitation
to meet when selected by Nature to do so: that guarantees the highest
possible probability of a meeting for her and that results in the highest
payoff. Similarly for player j. Therefore, if (15) holds, then pij = 1. Thus,

xk = 0,

xi =
1

2
(vij − δxj + δxi),

xj =
1

2
(vij − δxi + δxj),
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whose solution is xi = xj =
1
2vij . This contradicts (15) for δ close to 1 unless

1
2vij ≥ max {vik, vjk}. (Region 1 with i, j = 1, 2.) Thus, we have found again
the same equilbirium as in the previous proposition for Region 1, although
this time it is only possible in the boundary case that v12

2 = v13 = v23,
otherwise we violate that δxi + δx3 < vi3 for i = 1, 2 and for δ close to 1.

2) Now, consider an equilibrium where there exist a pair (i, j) such that
δxi + δxj ≥ vij .

2.1) Suppose that λji > 0, so that by Result 3 xi = 0. Thus, δxj ≥ vij .
This requires that δxk ≥ vik. Indeed, if δxk < vik, then the expected payoff
for i at step (4) if i and k meet is positive, 1

2(vik − δxk). Therefore, a
deviation to λji = 0 would be profitable for player i. But if δxk ≥ vik and
δxj ≥ vij then xk > vik and xj > vij , so that in equilibrium λij = λik = 0.
Given these values of λij and λ

i
k, and since xk > vik and xj > vij , equilibrium

requires that μij = μik = 0. Thus, pjk = 1. Therefore, xk = xj =
1
2vjk. Since

δxk ≥ vik and δxj ≥ vij , this can only happen in the interior of Region 1
(v12 > 2v13), and coincides with our equilibrium obtained in the existence
part of this proof.

2.2) Suppose that λji = λij = 0. Thus, pij = 0 and λki = 1− λji = 1 > 0.
Suppose that xi = 0. If δxi + δxk ≥ vik then we can apply the same
argument as in 2.1) above with (i, j) replaced by (i, k) , and conclude that
such equilibrium can only occur in the interior of Region 1 (v12 > 2v13) and
coincides with the one obtained in the existence part of this proof. On the
other hand, xi = 0 and δxi + δxk < vik may only hold simultaneously if
pik = 0. Otherwise, step (4) with a meeting of i and k occurs with positive
probability and at that node the payoff of i is 12(vik−δxi−δxk) > 0. In that
case, pjk = 1, and again the only such equilibrium is the one we obtained
for Region 1. Similarly for player j.

Last, suppose that xi, xj > 0. Since λ
j
i = λij = 0, this requires that

vik − δxi = vjk − δxj , (16)

since otherwise either pik or pjk would be equal to 1, so that either xi = 0 or
xj = 0. Now, suppose δxi+ δxk ≥ vik. This implies that player i’s expected
payoff at step (4), if she meets k, is δxi, and thus her expected payoff at
step (1) is pikδxi. Thus, xi ≤ pikδxi, which is a contradiction to xi > 0.
The same holds for player j. Thus, δxi + δxk < vik and δxj + δxk < vjk,
and hence from Result 2, ρki = ρik = ρkj = ρjk = 1. Thus, such equilibrium
should satisfy

xi = pik(
vik − δxk + δxi

2
), (17)

xj = (1− pik)(
vjk − δxk + δxj

2
),

xk = pik(
vik − δxi + δxk

2
) + (1− pik)(

vjk − δxj + δxk
2

).

Together with (16), this is a system of four equations that the four unknowns
should satisfy in an equilibrium of this type. We study the solutions to
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this system as δ approaches 1. Substituting (16) in (17), and after some
manipulation:

xi + xj = xk(1− δ) + pikδxi + (1− pik)δxj .

Thus, as δ → 1 either pik and xi both approach 0, or 1 − pik and xj both
approach 0. W.l.o.g, let the latter be the case. Note that substituting (16)
in the third equation of (17) we have (2 − δ)xk = vjk − δxj , so that as
δ → 1 and xj → 0, then xk → vjk. And from the first equation in (17) then
xi → vik − vjk. Since we are assuming that δxi ≥ vij − δxj , this requires for
δ large enough that vik − vjk ≥ vij . Thus, this equilibrium can exist only in
Region 2, for k = 1, j = 2 and i = 3 (v12 ≤ 2v13, and v12 ≤ v13 + v23). In
other words, for δ large, this equilibrium would approach the one we already
obtained in the existence part of this proof. QED

7.3 Proof of Proposition 3

Let i be chosen by Nature, and let (z1, z2, z3) be the payoffs in a stationary
subgame perfect equilibrium of bΓ(δ, α;x). A proposal by player i to divide
V according to an offer (s1, s2, s3) will be accepted only if

sj ≥ δ [(1− α)zj + αxj ] ,

and rejected otherwise. In case of equality, both rejection and acceptance
may be part of equilibrium. Thus, if players j0s strategy, j 6= i, is to accept
in case of equality, then the best response of player i is either to offer sj =
δ [(1− α)zj + αxj ] to player j 6= i, or to make any offer that is otherwise
rejected. (If some player j0s strategy, j 6= i, implies rejection in case of
indifference, then player i has no best response with an acceptable offer.)
Thus, player i0s offer in any equilibrium where her offer is accepted must
satisfy

si = V − δ [(1− α) (zj + zk) + α (xj + xk)] . (18)

Therefore, in any equilibrium in which all offers are accepted, the payoffs
satisfy

zi =
1

3
si +

2

3
δ [(1− α)zi + αxi] .

Substituting for si, we can write the above equation as

zi = δ [(1− α)zi + αxi] +
1

3

h
V − δ

X3

l=1
((1− α)zl + αxl)

i
.

The last term is common for all players. Thus, we can simplify these three
equations and obtain

(zi − zj) (1− δ(1− α)) = δα (xi − xj) ,

which together with
P3

l=1 zl = V implies that:

zi =
1

3
[V +A (δ, α) (2xi − xj − xk)]
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where A (δ, α) ≡ δα
1−δ(1−α) . Note that, for any value of α, A (δ, α) → 1

as δ → 1.
This is an equilibrium if si > δzi, where si is defined in (18). This

inequality may be written as

V − δ
hX3

l=1
(1− α)zl + α (zi + xj + xk)

i
> 0,

which is satisfied since
P3

l=1 zl = V and zl ≥ xl for l = 1, 2, 3. Thus, we
only need to rule out an equilibrium where i has no profitable offer that will
be accepted by j and k. That is, si < δzi, where si is defined in (18). In
that case,

zi =
1

3
δzi +

2

3
δ [(1− α)zi + αxi] ,

which implies that zi < xi. This requires that si < δxi, that is, si− δxi < 0,
or

V − δ [(1− α) (zj + zk) + α (xj + xk + xi)] < 0.

Since xj+xk+xi ≤ V and zj+zk ≤ V , this is a contradiction that concludes
the proof. QED

7.4 Proof of Lemma 1

Without loss of generality, assume vi = 0, for all i = 1, 2, 3. Assume the
core is not empty, that is, condition (2) holds, and that x does not belong
to the core. We will show that x does not belong to the BS of the grand
coalition. We do not need to consider allocations where xi < 0 for some i, or
where x1+ x2+x3 < V , since they cannot be in the BS. Thus, assume that
xi + xj < vij for some i, j, so that xk > V − vij , for k 6= i, j. Consider an
objection y of i against k where yi + yj = vij , with yi > xi and yj > xj . A
counter-objection z of k against i should satisfy zj ≥ yj , and zj + zk = vjk,
so that zk ≤ vjk − yj = vjk − (vij − yi). Also, zk ≥ xk > V − vij . Therefore,
if

vjk − (vij − yi) < V − vij ,

or
yi < V − vjk,

then there exists no counter-objection to objection y, and so x does not
belong to the BS. If xi < V − vjk we can always construct such y, and
then a necessary condition for x to belong to the BS is that xi ≥ V − vjk.
Switching the subscripts i and j, we could consider an objection y0 of j
against k, and repeat the argument to show that a necessary condition for
x to belong to the BS is that xj ≥ V − vik. Thus, a necessary condition is
that

xi + xj ≥ 2V − vjk − vik ≥ vij ,

where the last inequality follows from condition (2). This contradicts xi +
xj < vij and proves that the BS coincides with the core when the latter is
not empty. Now assume that condition (2) is not satisfied. In particular,
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this implies that we are in Region 3. We have already shown that the
R−solution belongs to the BS. Hence, we only need to show that any other
allocation does not belong to the BS. Note that (2) implies that for any
feasible allocation (including the efficient ones), if xi = Ui+ � (in Region 3),
then xj + xk ≤ vjk − �, for any � > 0. So, consider an efficient allocation
such that this is the case for some �, and an objection y of j against i, with
yj = xj +

�
2 and yk = vjk − yj = vjk − xj − �

2 . A counter-objection z of i
against j should satisfy that zk ≥ yk but also zi ≥ xi, so that zk ≤ vik − xi.
Thus, for i to indeed have a counter-objection against j it is required that

vik − xi = vik − Ui − � ≥ yk = vjk − xj −
�

2
,

that is, xj ≥ vjk−vik+Ui+
�
2 = Uj+

�
2 , where the last equality follows from

the definition of Ui. Thus, this is a necessary condition for x to be in the
BS. Switching the subscripts j and k, we would also conclude that another
necessary condition is that xk ≥ Uk+

�
2 . Thus, a necessary condition is that

xi = V −xj −xk ≤ V −Uj −Uk − � = Ui− �. And this contradiction proves
the result. QED
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