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A Few Definitions

A Lottery is a (cumulative) probability distribution over monetary prizes.
It is a probabilistic description of the DMs uncertain situation.

L is the set of all lotteries.
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A Few Definitions

A Lottery Preference is a utility function V : L→ R over lotteries.

! In economics, often lotteries are the primitive.

! Empirical evidence does not come in the form of lotteries.

! The relevant probabilities are estimated.

! Assumptions are made about whether or not agents know (or agree
on) these probabilities.



Definitions Continued

An Act is a nonprobabilistic description of the DMs uncertain situation.

Cloudy  Rainy  Snowy 

100  -80  65 

An act is less abstract than a lottery. It is more like real data.



Definitions Continued

Assessment is a the process of assigning subjective probabilities to events.

.4  .35  .25 

Cloudy  Rainy  Snowy 

f 100  -80  65 

g 50  30  0 

h -20  -20  -20 
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Definitions Continued

Reduction enables the DM to interpret acts as lotteries.

.4  .35  .25 

Cloudy  Rainy  Snowy  Lotteries 

f 100  -80  65  (.35, -80; .25, 65; .4, 100)  

g 50  30  0  (.25, 0; .35, 30; .4, 50) 

h -20  -20  -20  (1, -20) 

… …  …  … 

… …  …  … 

… …  …  … 

 



Definitions Continued

A DM is Probabilistically Sophisticated if he evaluates acts f through

Assessment + Reduction + Lottery Preference

U(f ) = V (G f )

Add the phrase “as if” to the above as many times as you wish.



Three Approaches of Decision-Making under Uncertainty

The Pure Subjectivist (Bayesian) Approach

! All events can be assigned probabilities: Subjective Expected Utility
Theory

! Key Anomali: Allais Paradox,

Preferences not linear in probabilities

! Literature: Generalizations of EU Theory

! “Final” Model: Machina-Schmeidler (Probabilistic Sophistication)
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Some Literature:

! Ramsey (1926)

! Savage (1954)

! All of the nonexpected utility literature

! Machina and Schmeidler (1992)



Fast Summary

x  
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z

 

You win $x , $y or $z
Depending on where the dart lands



Subjective Probabilities

x

y

z

Prob: .5

Prob: .3

Prob: .2

! The DM assesses probabilities
to all events.

! Reduces the act to a lottery.

! Probabilistic Sophistication

The act becomes the lottery (.5x ; .3y ; .2z)
Yielding utility .5u(x) + .3u(y) + .2u(z)
Or more generally U(.5x ; .3y ; .2z)
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Knightian Approach

Knightian uncertainty is risk that is immeasurable, not possible to
calculate.
Wikipedia

“Uncertainty must be taken in a sense radically distinct from the familiar
notion of Risk,.... The essential fact is that ’risk’ means in some cases a
quantity susceptible of measurement, while at other times it is something
distinctly not of this character.”
F. Knight



Some Literature:

! Knight (1921)

! Ellsberg (1961)

! Schmeidler (1989)

! Most of the ambiguity literature



Fast Summary

! Some events have (subjective or objective) probabilities, others
don’t.

! Ambiguity is a property of a single event.

! Key Anomali: Ellsberg Single-Urn Paradox

Probabilities are not additive.

! “Final” Model: Uncertainty Averse Preferences Cerreia-Vioglio,
Maccheroni, Marinacci and Montrucchio (2008)
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Risky versus Ambiguous Events
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 E1  E2 

! E1 unambiguous

! E2,E3 ambiguous

Each gray region has a third of the area.

DM prefers E1 to E2.

But also E2 ∪ E3 to E1 ∪ E3.



Risky versus Ambiguous Events

        E3    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 E1  E2 

! E1 unambiguous

! E2,E3 ambiguous

Each gray region has a third of the area.

DM prefers E1 to E2.

But also E2 ∪ E3 to E1 ∪ E3.



Risky versus Ambiguous Events

        E3    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 E1  E2 

! E1 unambiguous

! E2,E3 ambiguous

Each gray region has a third of the area.

DM prefers E1 to E2.

But also E2 ∪ E3 to E1 ∪ E3.



Risky versus Ambiguous Events

        E3    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 E1  E2 

! E1 unambiguous

! E2,E3 ambiguous

Each gray region has a third of the area.

DM prefers E1 to E2.

But also E2 ∪ E3 to E1 ∪ E3.



Fast Summary

        E3    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 E1  E2 

! Every column is unambiguous

! “susceptible of measurement”

E1 has probability 1
3 .

Probability of E2? (E2 and E3 are ambiguous)

If it existed would have to be 1
3 but it doesn’t.
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Source Preference Approach

! Not all probabilities are equal.

! Multiple ways to split-up the event space into unambiguous events.

! Riskiness is a property of a collection of events.

! A DM may be indifferent between A and Ac ; B and Bc .

! But not between A and B.

! A DM may probabilistically sophisticated over multiple collections of
events (sources).

! DM need not probabilistically sophisticated across environments.

! Key Anomali: Ellsberg Two-Urn Paradox

! “Final” Model: ?
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Some Literature:

! Heath and Tversky (1991)

! Abdellaoui, Baillon, Placido and Wakker (2008)

! Chew and Sagi (2008)

! Ergin and Gul (2009)

! The Home Bias Literature

Different risk aversion in different environments



A Two-Urn Example

Urn 1: n-colors, 1 ball for each color;

Bet 1: $100 if the color of a ball drawn from urn 1 is in the set A, $0
otherwise.

! intuitively, only the cardinality of the set A should matter.
Therefore, we can define Pr(A) = #A/n and Pr(A) should be all
that matters for the DM.

! The DM is probabilistically sophisticated when choosing among
risky prospects that depend on balls drawn from urn 1.
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Example Continued

Urn 2: n balls, n possible colors, no further information.

Bet 2: $100 if the color of a ball drawn from urn 2 is in the set A, $0
otherwise.

! As in the case of urn 1, we can define Pr(A) = #A/n and only
Pr(A) should matter for the ranking of bets

! Since colors are interchangeable, we expect a decision maker to be
probabilistically sophisticated when choosing among risky prospects
that depend on balls drawn from urn 2.

But the DM need not be indifferent between the Bet 1 and Bet 2.
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Objectives:

! (1) Subjective Model of Choice under Uncertainty

A (Simple) Representation for All Acts

! (2) Multiple Sources and Environments

Use the Framework to Address Experimental Evidence (Allais and
Ellsberg)

! (3) Separate Uncertainty and Attitude to Uncertainty.
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The Model

State space: Ω (cardinality of the continuum.)

Prizes: [l ,m].

Domain of preference: F = {f : Ω → [l ,m]}

We axiomatize Expected Uncertain Utility (EUU).
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An Example:

!  

A"! E#!

 

States: Ω = [0, 1]× [0, 1]

The Prior (E , µ):

E is smallest σ-algebra that contains all
full-height rectangles (like E) and all
sets that have zero Lebesgue measure
on the square.

µ([a, b]× [0, 1]) = b− a for b ≥ a.



An Act, Its Envelope and Utility:
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Suppose x < y < z

Envelope:

f1 = x

f2 = yE1z

U(f ) = µ(E1)u(x , y) + µ(E2)u(x , z)
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(1) The EUU Representation

Prior: is a σ−algebra E and a non-atomic (countably additive)
probability measure µ.

Prize intervals: I = {(x , y) : l ≤ x ≤ y ≤ m}

Envelope: Fix a prior (E , µ). For any act f , f1 is the largest measurable
lower bound of f and f2 is the smallest measurable lower bound of f .

Definition: An envelope for f ∈ F is a function f : Ω → I such that

1. f is E -measurable and µ({f1(ω) ≤ f (ω) ≤ f2(ω)}) = 1

2. g satisfies (1) implies µ({g1(ω) ≤ f1(ω) ≤ f2(ω) ≤ g2(ω)}) = 1.
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Lemma 1: Let (E , µ) be a prior and f ∈ F . Then, f has an envelope.



Expected Uncertain Utility

Interval utility index: a continuous function u : I → R such that
u(x , y) > u(x ′, y ′) whenever x > x ′, y > y ′.

Definition: The preference ) is an EUU if there is a prior (E , µ) and an
interval utility index u such that

U(f ) =
∫

u(f1(ω), f2(ω))dµ

represents ).



Expected Uncertain Utility

Interval utility index: a continuous function u : I → R such that
u(x , y) > u(x ′, y ′) whenever x > x ′, y > y ′.

Definition: The preference ) is an EUU if there is a prior (E , µ) and an
interval utility index u such that

U(f ) =
∫

u(f1(ω), f2(ω))dµ

represents ).



Expected Uncertain Utility

Given the prior µ we can define a bicumulative over prizes for every act f :

Bicumulative: Let Hf (x , y) = µ({f1 ≤ x , f2 ≤ y}).

EUU:

U(f ) =
∫

u(x , y)dHf (x , y)

The bicumulative is analogous to cdf over prizes in the standard case.
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! Bets on rows, columns or colors
are different environments.

! Preferences in each
environment are different

Each urn (or collection of events: rows, columns and colors) is a a source
and the collection of all bets (acts) that depend on a particular source is
an environment.

The DM can be more risk averse when betting on columns than when
betting on colors.
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Each urn (or collection of events: rows, columns and colors) is a a source
and the collection of all bets (acts) that depend on a particular source is
an environment.

The DM can be more risk averse when betting on columns than when
betting on colors.



Sources and Environments

! Let C be a collection of sets (a λ-system).

! FC = {f ∈ F : f is C −measurable}

For example, let

C1 = {G(ray), O(range), Y(ellow), P(each)}

C = {all events that depend only on color, G, Y, G ∪ Y etc.}

FC = {all acts that depend only on color}



! Suppose each color has the same probability and each column Ki
has the same probability (1/4).

! Consider the two bets: 100Y 0 and 100K10.

! Suppose the DM utility function satisfies

U(40) = U(100Y 0) > U(100K10) = U(35)

Hence, the DM prefers betting on color to betting on column.
Equivalently the DM is more risk averse when betting on columns than
when betting on colors.



! If (C, π) is a probability measure (Assessment), then each f ∈ FC
can be assigned a cdf (Lottery) G f (Reduction).

! The Assessment) makes f ∈ FC into a source and FC into an
environment.

! Then, the DM has a lottery preference V so that he assigns utility
V (G f ) to each f .

Whether or not FC is an environment is subjective as is the lottery
preference V on FC .



Sources, Environments and EUU

! So far, the definitions of Source and Environment don’t require
EUU preferences.

! How many sources does a typical EUU preference have?

! What kind of lottery preferences does an EUU preference have in
these environments?

! How do these environments enable EUU theory to address
experimental and empirical evidence (Allais, Ellsberg, Home Bias)?



(2) Multiple Sources and Environments in EUU Theory

Definition: u is strongly symmetric if it has the form

u(x , y) = (v(x) + v(y))/2

for some v .

Lemma 3: If FC is an environment for the EUU (E , µ, u) and u is not
strongly symmetric, then it is an environment every EUU with the same
prior.

! EUU’s with the same prior have (essentially) the same environments.

! This is the sense in which (3) Separation is achieved.

! We call FC a Regular Environment for (E , µ) if it is an environment
for some (E , µ, u) with u not strongly symmetric.
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! model source preference (“home bias”);

! match Ellsberg-type evidence.

! address Allais-type evidence.
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Multiple Environments: Some Properties

! Every EUU has every source.

! The prior alone determines if FC is an environment for (E , µ, u).

! Risk attitude depends u.

! One environment for the the EUU (E , µ, u) is FE , the Ideal
environment.

! Every EUU is an expected utility maximizer in its ideal environment.

U(f ) =
∫

u(f (ω), f (ω))dµ

.

! In other environments, the EUU (E , µ, u) is a nonexpected utility
maximizer



Multiple Environments: Some Properties

! Every EUU has every source.

! The prior alone determines if FC is an environment for (E , µ, u).

! Risk attitude depends u.

! One environment for the the EUU (E , µ, u) is FE , the Ideal
environment.

! Every EUU is an expected utility maximizer in its ideal environment.

U(f ) =
∫

u(f (ω), f (ω))dµ

.

! In other environments, the EUU (E , µ, u) is a nonexpected utility
maximizer



Regular Environments and Lottery Preferences for EUU

Proposition 2: For any interval utility u, there exists a sequence of
lottery preferences V u

n and for any regular environment FC of (E , µ),
there exists a sequence an ≥ 0, ∑ an = 1 such that

U(f ) = V (G f ) = ∑
n

anV u
n (G f )

represents (E , µ, u).

Furthermore, for any such sequence an and (E , µ),
there exists a regular environment FC such that

U(f ) = ∑
n

anVn(G f )

for all f ∈ FC .
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Proposition 2: For any interval utility u, there exists a sequence of
lottery preferences V u

n and for any regular environment FC of (E , µ),
there exists a sequence an ≥ 0, ∑ an = 1 such that

U(f ) = V (G f ) = ∑
n

anV u
n (G f )

represents (E , µ, u). Furthermore, for any such sequence an and (E , µ),
there exists a regular environment FC such that
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n
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Allais and Uncertainty Aversion

Allais Paradox:
V (100) > V

(
150, 4/5; 0, 1/5

)

but
V

(
100, 2/5; 0, 3/5

)
< V

(
150, 1/2; 0, 1/2

)



Allais Reversals

Definition: A lottery preference V is prone to Allais-reversals if there is
an environment γ so that we can find

! a lottery F

! prizes x , y where x is weakly worse than all other prizes in the
support of F

! α ∈ (0, 1)

so that we have

! V (y) > V (F )

! V (αy + (1− α)x) < V (αF + (1− α)x).
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Rank Dependent EU

The following lottery preferences generate Allais Reversals:

PTF: γ : [0, 1] → [0, 1] is a probability transformation function if it is
continuous, onto and strictly increasing.

RDEU: The lottery preference V : L→ R is an RDEU if

V (F ) =
∫

v(x)dγ(F (x))

for some PTF γ.

PTF’s that have an inverted S-shape are (a) consistent with Allais
reversals and (b) have some supporting experimental evidence (Starmer
(2000)).
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Polynomial Utility and Special Cases

Recall: A sequence an ≥ 0 such that ∑n an = 1 characterizes a regular
environment and in each environment {an} the EUU with interval utility
u has lottery preference

U(f ) = ∑
n

anV u
n (G f )

We call the sequence an the uncertainty measure of the corresponding
environment.



! V u
1 (G ) =

∫
u(x , x)dG (x). Hence V u

1 is an EU preference. The
environment a1 = 1 is an EU environment.

! V u
n (G ) =

∫
v(x)d(G (x))n whenever u(x , y) = v(x) for some v .

Hence, for such u, every environment is a RDEU environment.

! More generally, whenever u(x , y) = αv(x) + (1− α)v(y) for some
v , every environment is an RDEU environment. This RDEU has the
desired inverted S-shape whenever {an} is sufficiently uncertain.

! V u
2 is the quadratic utility of Machina (1982), Chew, Epstein and

Segal (1991) (with utility index u). Hence, a2 = 1 is the quadratic
utility environment.
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Strong Uncertainty Aversion

An EUU is risk averse in an environment if it dislikes mean preserving
spreads.

An EUU is strongly uncertainty averse if it is risk averse in every
environment.

! u is maximally pessimistic if there exist some v such that
u(x , y) = v(x) for all x , y .
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Strong Uncertainty Aversion

An EUU is risk averse in an environment if it dislikes mean preserving
spreads.

An EUU is strongly uncertainty averse if it is risk averse in every
environment.

! u is maximally pessimistic if there exist some v such that
u(x , y) = v(x) for all x , y .



Proposition 3: Let (E , µ, u) be an EUU. Then, the following conditions
are equivalent

(1) The EUU (E , µ, u) is strongly uncertainty averse;

(2) u is maximally pessimistic and concave.



Uncertainty of Environments

Definition: The environment FA is more uncertain than the
environment FB if every strongly uncertainty averse EUU prefers f ∈ FA
to g ∈ FB whenever f and g yield the same lottery.



Proposition 4: FB more uncertain than FA if and only if

∑
n

bntn ≤ ∑
n

antn

for all t ∈ [0, 1], where {an} and {bn} are the uncertainty measures of
FA and FB respectively.

! We write FB )mu FA (or equivalently {bn} )mu {an}) to mean
“FB is more uncertain than FA.”

! bn+1 = 1 and an = 1 implies {bn} )mu {an}.
! Not all environments can be ranked. For example, a2 = 1 and

a1 = a4 = 1/2 cannot be ranked.



Risk Loving under Extreme Uncertainty:

The EUU is risk loving under extreme uncertainty if, for sufficiently
uncertain environments, there are lotteries that the DM prefers to their
expected value.

Definition u displays risk loving under extreme uncertainty if there exists
an environment FA and a lottery F such that FB )mu FA implies
U(f ) > U(z) whenever f ∈ FB, G f = F and z is the mean of F .



Proposition 5: The following conditions are equivalent

! u is not maximally pessimistic;

! u is prone to Allais-reversals;

! u displays risk loving under extreme uncertainty.
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Proposition 5: The following conditions are equivalent

! u is not maximally pessimistic;

! u is prone to Allais-reversals;

! u displays risk loving under extreme uncertainty.



Ellsberg One Urn Example

3 balls, red, blue or green. 1 ball is red. Intuitively, {r} and {b, g} have
unambiguous probability 1/3 and 2/3. But, {g} and {r , b} are
ambiguous.

What would it mean for a model (an EUU model) to explain or
rationalize the Ellsberg One-Urn Example?



! N is a nonempty finite set; N is the set of subsets of N.

! P be the set of all probabilities on N and ι ∈ P.

! M ⊂ N is a collection of sets (a λ-system).

The collection (N,M, ι) is an urn experiment if for all K ∈ N\M, there
exist p ∈ P such that p(M) = ι(M) for all M ∈M and p(K ) += ι(K ).

Given any prior (E , µ), a collection of subsets Co of Ω is unambiguous if
there exists a source A such that Co ⊂ A. The event A ⊂ Ω is
ambiguous wrt Co if there exists no source B such that Co ∪ {A} ⊂ B.



Ellsberg One Urn Example is an Urn Example

M = {{r}, {b, g}}
ι is any probability such that ι{r} = 1/3 and ι{b, g} = 2/3



Zhang’s (1997) 4 color urn

2 balls: red, blue, green, or yellow.
1 balls is red or blue
1 ball is red or green.

Intuitively unambiguous events are {r , b}, {g , y}, {r , g}, {b, y} and each
has ι = 1/2.



Zhang’s (1997) 4 color urn

2 balls: red, blue, green, or yellow.
1 balls is red or blue
1 ball is red or green.

Intuitively unambiguous events are {r , b}, {g , y}, {r , g}, {b, y} and each
has ι = 1/2.



Rationalizing Urn Experiments

The prior (E , µ) rationalizes the urn experiment (N, µ, ι) if there exists
an onto mapping T : Ω → N such that Co := {T−1(M) |M ∈M} is
unambiguous and every T−1(L) for L ∈ N\M is ambiguous wrt Co .

Proposition 6: Every prior rationalizes every urn experiment.



Conclusion

Expected Uncertain Utility theory is a simple extension of Subjective
Expected Utility theory.

EUU provides:

! a model of source preference.

! a unified treatment of Allais and Ellsberg style experiments.

! separation of uncertainty attitude and uncertainty perception.

EUU has:

! significant overlap with many existing models (Choquet EU,
Maxmin EU, α-Maxmin EU.)

! few behavioral restrictions; more of a framework than a “theory.”
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