Measurable Ambiguity
with Wolfgang Pesendorfer

August 2009

A Few Definitions

A Lottery is a (cumulative) probability distribution over monetary prizes.
It is a probabilistic description of the DMs uncertain situation.
\mathcal{L} is the set of all lotteries.

A Few Definitions

A Lottery Preference is a utility function $V: \mathcal{L} \rightarrow R$ over lotteries.

- In economics, often lotteries are the primitive.
- Empirical evidence does not come in the form of lotteries.
- The relevant probabilities are estimated.
- Assumptions are made about whether or not agents know (or agree on) these probabilities.

Definitions Continued

An Act is a nonprobabilistic description of the DMs uncertain situation.

Cloudy
100 -80

Snowy 65

An act is less abstract than a lottery. It is more like real data.

Definitions Continued

Assessment is a the process of assigning subjective probabilities to events.

	.4	.35	.25
	Cloudy	Rainy	Snowy
f	100	-80	65
g	50	30	0
h	-20	-20	-20
\ldots	\ldots	\ldots	\ldots
\cdots	\cdots	\cdots	\cdots
\cdots	\cdots	\cdots	\cdots

Definitions Continued

Reduction enables the DM to interpret acts as lotteries.

	.4	.35	.25	
	Cloudy	Rainy	Snowy	Lotteries
f	100	-80	65	$(.35,-80 ; .25,65 ; .4,100)$
g	50	30	0	$(.25,0 ; .35,30 ; .4,50)$
h	-20	-20	-20	$(1,-20)$
\ldots	\ldots	\ldots	\cdots	
\ldots	\ldots	\ldots	\cdots	
\ldots	\ldots	\ldots	\cdots	

Definitions Continued

A DM is Probabilistically Sophisticated if he evaluates acts f through
Assessment + Reduction + Lottery Preference

$$
U(f)=V\left(G^{f}\right)
$$

Add the phrase "as if" to the above as many times as you wish.

Three Approaches of Decision-Making under Uncertainty

The Pure Subjectivist (Bayesian) Approach

- All events can be assigned probabilities: Subjective Expected Utility Theory

Three Approaches of Decision-Making under Uncertainty

The Pure Subjectivist (Bayesian) Approach

- All events can be assigned probabilities: Subjective Expected Utility Theory
- Key Anomali: Allais Paradox,

Preferences not linear in probabilities

Three Approaches of Decision-Making under Uncertainty

The Pure Subjectivist (Bayesian) Approach

- All events can be assigned probabilities: Subjective Expected Utility Theory
- Key Anomali: Allais Paradox,

Preferences not linear in probabilities

- Literature: Generalizations of EU Theory

Three Approaches of Decision-Making under Uncertainty

The Pure Subjectivist (Bayesian) Approach

- All events can be assigned probabilities: Subjective Expected Utility Theory
- Key Anomali: Allais Paradox, Preferences not linear in probabilities
- Literature: Generalizations of EU Theory
- "Final" Model: Machina-Schmeidler (Probabilistic Sophistication)

Some Literature:

- Ramsey (1926)
- Savage (1954)
- All of the nonexpected utility literature
- Machina and Schmeidler (1992)

Fast Summary

You win $\$ x, \$ y$ or $\$ z$
Depending on where the dart lands

Subjective Probabilities

- The DM assesses probabilities to all events.

Subjective Probabilities

- The DM assesses probabilities to all events.
- Reduces the act to a lottery.

Subjective Probabilities

- The DM assesses probabilities to all events.
- Reduces the act to a lottery.
- Probabilistic Sophistication

The act becomes the lottery (.5x; .3y; .2z)

Subjective Probabilities

- The DM assesses probabilities to all events.
- Reduces the act to a lottery.
- Probabilistic Sophistication

The act becomes the lottery (.5x; .3y;.2z)
Yielding utility $.5 u(x)+.3 u(y)+.2 u(z)$
Or more generally $U(.5 x ; .3 y ; .2 z)$

Knightian Approach

Knightian uncertainty is risk that is immeasurable, not possible to calculate
Wikipedia
"Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk,.... The essential fact is that 'risk' means in some cases a quantity susceptible of measurement, while at other times it is something distinctly not of this character."
F. Knight

Some Literature:

- Knight (1921)
- Ellsberg (1961)
- Schmeidler (1989)
- Most of the ambiguity literature

Fast Summary

- Some events have (subjective or objective) probabilities, others
don't.

Fast Summary

- Some events have (subjective or objective) probabilities, others don't.
- Ambiguity is a property of a single event.

Fast Summary

- Some events have (subjective or objective) probabilities, others don't.
- Ambiguity is a property of a single event.
- Key Anomali: Ellsberg Single-Urn Paradox

Probabilities are not additive.

Fast Summary

- Some events have (subjective or objective) probabilities, others don't.
- Ambiguity is a property of a single event.
- Key Anomali: Ellsberg Single-Urn Paradox

Probabilities are not additive.

- "Final" Model: Uncertainty Averse Preferences Cerreia-Vioglio, Maccheroni, Marinacci and Montrucchio (2008)

Risky versus Ambiguous Events

Risky versus Ambiguous Events

Each gray region has a third of the area

Risky versus Ambiguous Events

Each gray region has a third of the area
DM prefers E_{1} to E_{2}.

Risky versus Ambiguous Events

Each gray region has a third of the area
DM prefers E_{1} to E_{2}.
But also $E_{2} \cup E_{3}$ to $E_{1} \cup E_{3}$.

Fast Summary

- Every column is unambiguous

Fast Summary

- Every column is unambiguous
- "susceptible of measurement"

Fast Summary

- Every column is unambiguous
- "susceptible of measurement"
E_{1} has probability $\frac{1}{3}$.

Fast Summary

E_{1} has probability $\frac{1}{3}$
Probability of E_{2} ? (E_{2} and E_{3} are ambiguous)

Fast Summary

Source Preference Approach

Source Preference Approach

- Not all probabilities are equal.
- Multiple ways to split-up the event space into unambiguous events.

Source Preference Approach

- Not all probabilities are equal.
- Multiple ways to split-up the event space into unambiguous events.
- Riskiness is a property of a collection of events

Source Preference Approach

- Not all probabilities are equal.
- Multiple ways to split-up the event space into unambiguous events.
- Riskiness is a property of a collection of events.
- A DM may be indifferent between A and $A^{c} ; B$ and B^{c}.

Source Preference Approach

- Not all probabilities are equal.
- Multiple ways to split-up the event space into unambiguous events.
- Riskiness is a property of a collection of events.
- A DM may be indifferent between A and $A^{c} ; B$ and B^{c}.
- But not between A and B.

Source Preference Approach

- Not all probabilities are equal.
- Multiple ways to split-up the event space into unambiguous events.
- Riskiness is a property of a collection of events.
- A DM may be indifferent between A and $A^{c} ; B$ and B^{c}.
- But not between A and B.
- A DM may probabilistically sophisticated over multiple collections of events (sources).

Source Preference Approach

- Not all probabilities are equal.
- Multiple ways to split-up the event space into unambiguous events.
- Riskiness is a property of a collection of events.
- A DM may be indifferent between A and $A^{c} ; B$ and B^{c}.
- But not between A and B.
- A DM may probabilistically sophisticated over multiple collections of events (sources).
- DM need not probabilistically sophisticated across environments.

Source Preference Approach

- Not all probabilities are equal.
- Multiple ways to split-up the event space into unambiguous events.
- Riskiness is a property of a collection of events.
- A DM may be indifferent between A and $A^{c} ; B$ and B^{c}.
- But not between A and B.
- A DM may probabilistically sophisticated over multiple collections of events (sources).
- DM need not probabilistically sophisticated across environments.
- Key Anomali: Ellsberg Two-Urn Paradox

Source Preference Approach

- Not all probabilities are equal.
- Multiple ways to split-up the event space into unambiguous events.
- Riskiness is a property of a collection of events.
- A DM may be indifferent between A and $A^{c} ; B$ and B^{c}.
- But not between A and B.
- A DM may probabilistically sophisticated over multiple collections of events (sources).
- DM need not probabilistically sophisticated across environments.
- Key Anomali: Ellsberg Two-Urn Paradox
- "Final" Model: ?

Some Literature:

- Heath and Tversky (1991)
- Abdellaoui, Baillon, Placido and Wakker (2008)
- Chew and Sagi (2008)
- Ergin and Gul (2009)
- The Home Bias Literature

Different risk aversion in different environments

A Two-Urn Example

Urn 1: n-colors, 1 ball for each color;
Bet 1: $\$ 100$ if the color of a ball drawn from urn 1 is in the set $A, \$ 0$ otherwise.

A Two-Urn Example

Urn 1: n-colors, 1 ball for each color;

Bet 1: $\$ 100$ if the color of a ball drawn from urn 1 is in the set $A, \$ 0$ otherwise.

- intuitively, only the cardinality of the set A should matter.

Therefore, we can define $\operatorname{Pr}(A)=\# A / n$ and $\operatorname{Pr}(A)$ should be all that matters for the DM.

A Two-Urn Example

Urn 1: n-colors, 1 ball for each color;

Bet 1: $\$ 100$ if the color of a ball drawn from urn 1 is in the set $A, \$ 0$ otherwise

- intuitively, only the cardinality of the set A should matter.

Therefore, we can define $\operatorname{Pr}(A)=\# A / n$ and $\operatorname{Pr}(A)$ should be all that matters for the DM.

- The DM is probabilistically sophisticated when choosing among risky prospects that depend on balls drawn from urn 1

Example Continued

Urn 2: n balls, n possible colors, no further information.

Example Continued

Urn 2: n balls, n possible colors, no further information.

Bet 2: $\$ 100$ if the color of a ball drawn from urn 2 is in the set $A, \$ 0$ otherwise.

Example Continued

Urn 2: n balls, n possible colors, no further information.
Bet 2: $\$ 100$ if the color of a ball drawn from urn 2 is in the set $A, \$ 0$ otherwise.

- As in the case of urn 1, we can define $\operatorname{Pr}(A)=\# A / n$ and only $\operatorname{Pr}(A)$ should matter for the ranking of bets

Example Continued

Urn 2: n balls, n possible colors, no further information.
Bet 2: $\$ 100$ if the color of a ball drawn from urn 2 is in the set $A, \$ 0$ otherwise.

- As in the case of urn 1, we can define $\operatorname{Pr}(A)=\# A / n$ and only $\operatorname{Pr}(A)$ should matter for the ranking of bets
- Since colors are interchangeable, we expect a decision maker to be probabilistically sophisticated when choosing among risky prospects that depend on balls drawn from urn 2 .

Example Continued

Urn 2: n balls, n possible colors, no further information.
Bet 2: $\$ 100$ if the color of a ball drawn from urn 2 is in the set $A, \$ 0$ otherwise.

- As in the case of urn 1 , we can define $\operatorname{Pr}(A)=\# A / n$ and only $\operatorname{Pr}(A)$ should matter for the ranking of bets
- Since colors are interchangeable, we expect a decision maker to be probabilistically sophisticated when choosing among risky prospects that depend on balls drawn from urn 2 .

But the DM need not be indifferent between the Bet 1 and Bet 2 .

Objectives:

- (1) Subjective Model of Choice under Uncertainty

A (Simple) Representation for All Acts

Objectives:

- (1) Subjective Model of Choice under Uncertainty

A (Simple) Representation for All Acts

- (2) Multiple Sources and Environments

Use the Framework to Address Experimental Evidence (Allais and Ellsberg)

- (3) Separate Uncertainty and Attitude to Uncertainty.

The Model

State space: Ω (cardinality of the continuum.)

The Model

State space: Ω (cardinality of the continuum.)
Prizes: $[I, m]$.

The Model

State space: Ω (cardinality of the continuum.)
Prizes: $[I, m]$.
Domain of preference: $\mathcal{F}=\{f: \Omega \rightarrow[I, m]\}$

The Model

State space: Ω (cardinality of the continuum.)
Prizes: $[I, m]$.
Domain of preference: $\mathcal{F}=\{f: \Omega \rightarrow[I, m]\}$
We axiomatize Expected Uncertain Utility (EUU).

An Example:

States: $\Omega=[0,1] \times[0,1]$
The Prior (\mathcal{E}, μ) :
\mathcal{E} is smallest σ-algebra that contains all full-height rectangles (like E) and all sets that have zero Lebesgue measure on the square.
$\mu([a, b] \times[0,1])=b-a$ for $b \geq a$.

An Act, Its Envelope and Utility:

Suppose $x<y<z$
Envelope:
$f_{1}=x$
$\mathbf{f}_{2}=y E_{1} z$

An Act, Its Envelope and Utility:

$$
U(f)=\mu\left(E_{1}\right) u(x, y)+\mu\left(E_{2}\right) u(x, z)
$$

(1) The EUU Representation

Prior: is a σ-algebra \mathcal{E} and a non-atomic (countably additive) probability measure μ.
(1) The EUU Representation

Prior: is a σ-algebra \mathcal{E} and a non-atomic (countably additive) probability measure μ.

Prize intervals: $I=\{(x, y): I \leq x \leq y \leq m\}$
(1) The EUU Representation

Prior: is a σ-algebra \mathcal{E} and a non-atomic (countably additive) probability measure μ.

Prize intervals: $I=\{(x, y): I \leq x \leq y \leq m\}$
Envelope: Fix a prior (\mathcal{E}, μ). For any act f, \mathbf{f}_{1} is the largest measurable
lower bound of f and \mathbf{f}_{2} is the smallest measurable lower bound of f.
(1) The EUU Representation

Prior: is a σ-algebra \mathcal{E} and a non-atomic (countably additive) probability measure μ.

Prize intervals: $I=\{(x, y): I \leq x \leq y \leq m\}$
Envelope: Fix a prior (\mathcal{E}, μ). For any act f, \mathbf{f}_{1} is the largest measurable lower bound of f and \mathbf{f}_{2} is the smallest measurable lower bound of f.

Definition: An envelope for $f \in \mathcal{F}$ is a function $\mathbf{f}: \Omega \rightarrow I$ such that

1. \mathbf{f} is \mathcal{E}-measurable and $\mu\left(\left\{\mathbf{f}_{1}(\omega) \leq f(\omega) \leq \mathbf{f}_{2}(\omega)\right\}\right)=1$
2. \mathbf{g} satisfies (1) implies $\mu\left(\left\{\mathbf{g}_{1}(\omega) \leq \mathbf{f}_{1}(\omega) \leq \mathbf{f}_{2}(\omega) \leq \mathbf{g}_{2}(\omega)\right\}\right)=1$.

Lemma 1: Let (\mathcal{E}, μ) be a prior and $f \in \mathcal{F}$. Then, f has an envelope.

Expected Uncertain Utility

Interval utility index: a continuous function $u: I \rightarrow \mathbb{R}$ such that $u(x, y)>u\left(x^{\prime}, y^{\prime}\right)$ whenever $x>x^{\prime}, y>y^{\prime}$.

Expected Uncertain Utility

Interval utility index: a continuous function $u: I \rightarrow \mathbb{R}$ such that $u(x, y)>u\left(x^{\prime}, y^{\prime}\right)$ whenever $x>x^{\prime}, y>y^{\prime}$.

Definition: The preference \succeq is an EUU if there is a prior (\mathcal{E}, μ) and an interval utility index u such that

$$
U(f)=\int u\left(\mathbf{f}_{1}(\omega), \mathbf{f}_{2}(\omega)\right) d \mu
$$

represents \succeq.

Expected Uncertain Utility

Given the prior μ we can define a bicumulative over prizes for every act f :

Bicumulative: Let $H_{f}(x, y)=\mu\left(\left\{\mathbf{f}_{1} \leq x, \mathbf{f}_{2} \leq y\right\}\right)$.

Expected Uncertain Utility

Given the prior μ we can define a bicumulative over prizes for every act f :

Bicumulative: Let $H_{f}(x, y)=\mu\left(\left\{\mathbf{f}_{1} \leq x, \mathbf{f}_{2} \leq y\right\}\right)$.
EUU:

$$
U(f)=\int u(x, y) d H_{f}(x, y)
$$

The bicumulative is analogous to cdf over prizes in the standard case.

We provide a representation theorem for EUU preferences:

We provide a representation theorem for EUU preferences:

Under suitable assumptions,
A preference \succeq on \mathcal{F} has an EUU representation:

$$
U(f)=\int u\left(\mathbf{f}_{1}(\omega), \mathbf{f}_{2}(\omega)\right) d \mu
$$

We provide a representation theorem for EUU preferences:

Under suitable assumptions,
A preference \succeq on \mathcal{F} has an EUU representation:

$$
U(f)=\int u\left(\mathbf{f}_{1}(\omega), \mathbf{f}_{2}(\omega)\right) d \mu
$$

or equivalently

$$
U(f)=\int u(x, y) d H_{f}(x, y)
$$

(2) Multiple Sources and Environments

(2) Multiple Sources and Environments

- Bets on rows, columns or colors are different environments.
(2) Multiple Sources and Environments

- Bets on rows, columns or colors are different environments.
- Preferences in each environment are different

(2) Multiple Sources and Environments

- Bets on rows, columns or colors are different environments.
- Preferences in each environment are different

Each urn (or collection of events: rows, columns and colors) is a a source and the collection of all bets (acts) that depend on a particular source is an environment.

The DM can be more risk averse when betting on columns than when betting on colors.

Sources and Environments

- Let \mathcal{C} be a collection of sets (a λ-system).
- $\mathcal{F}_{\mathcal{C}}=\{f \in \mathcal{F}: f$ is \mathcal{C} - measurable $\}$

For example, let

$$
\begin{gathered}
\mathcal{C}_{1}=\{\mathrm{G}(\text { ray }), \mathrm{O}(\text { range }), \mathrm{Y}(\text { ellow }), \mathrm{P}(\text { each })\} \\
\mathcal{C}=\{\text { all events that depend only on color, } \mathrm{G}, \mathrm{Y}, \mathrm{G} \cup \mathrm{Y} \text { etc. }\} \\
\mathcal{F}_{\mathcal{C}}=\{\text { all acts that depend only on color }\}
\end{gathered}
$$

- Suppose each color has the same probability and each column K_{i} has the same probability $(1 / 4)$.
- Consider the two bets: $100 Y 0$ and $100 K_{1} 0$.
- Suppose the DM utility function satisfies

$$
U(40)=U(100 Y 0)>U\left(100 K_{1} 0\right)=U(35)
$$

Hence, the DM prefers betting on color to betting on column.
Equivalently the DM is more risk averse when betting on columns than when betting on colors.

- If (\mathcal{C}, π) is a probability measure (Assessment), then each $f \in \mathcal{F}_{\mathcal{C}}$ can be assigned a cdf (Lottery) G^{f} (Reduction).
- The Assessment) makes $f \in \mathcal{F}_{\mathcal{C}}$ into a source and $\mathcal{F}_{\mathcal{C}}$ into an environment.
- Then, the DM has a lottery preference V so that he assigns utility $V\left(G^{f}\right)$ to each f

Whether or not $\mathcal{F}_{\mathcal{C}}$ is an environment is subjective as is the lottery preference V on $\mathcal{F}_{\mathcal{C}}$.

Sources, Environments and EUU

- So far, the definitions of Source and Environment don't require EUU preferences.
- How many sources does a typical EUU preference have?
- What kind of lottery preferences does an EUU preference have in these environments?
- How do these environments enable EUU theory to address experimental and empirical evidence (Allais, Ellsberg, Home Bias)?
(2) Multiple Sources and Environments in EUU Theory

Definition: u is strongly symmetric if it has the form

$$
u(x, y)=(v(x)+v(y)) / 2
$$

for some v.
(2) Multiple Sources and Environments in EUU Theory

Definition: u is strongly symmetric if it has the form

$$
u(x, y)=(v(x)+v(y)) / 2
$$

for some v.
Lemma 3: If $\mathcal{F}_{\mathcal{C}}$ is an environment for the $\operatorname{EUU}(\mathcal{E}, \mu, u)$ and u is not strongly symmetric, then it is an environment every EUU with the same prior.
(2) Multiple Sources and Environments in EUU Theory

Definition: u is strongly symmetric if it has the form

$$
u(x, y)=(v(x)+v(y)) / 2
$$

for some v
Lemma 3: If $\mathcal{F}_{\mathcal{C}}$ is an environment for the $\operatorname{EUU}(\mathcal{E}, \mu, u)$ and u is not strongly symmetric, then it is an environment every EUU with the same prior.

- EUU's with the same prior have (essentially) the same environments.

(2) Multiple Sources and Environments in EUU Theory

Definition: u is strongly symmetric if it has the form

$$
u(x, y)=(v(x)+v(y)) / 2
$$

for some v
Lemma 3: If $\mathcal{F}_{\mathcal{C}}$ is an environment for the $\operatorname{EUU}(\mathcal{E}, \mu, u)$ and u is not strongly symmetric, then it is an environment every EUU with the same prior.

- EUU's with the same prior have (essentially) the same environments.
- This is the sense in which (3) Separation is achieved
(2) Multiple Sources and Environments in EUU Theory

Definition: u is strongly symmetric if it has the form

$$
u(x, y)=(v(x)+v(y)) / 2
$$

for some v
Lemma 3: If $\mathcal{F}_{\mathcal{C}}$ is an environment for the $\operatorname{EUU}(\mathcal{E}, \mu, u)$ and u is not strongly symmetric, then it is an environment every EUU with the same prior.

- EUU's with the same prior have (essentially) the same environments.
- This is the sense in which (3) Separation is achieved.
- We call $\mathcal{F}_{\mathcal{C}}$ a Regular Environment for (\mathcal{E}, μ) if it is an environment for some (\mathcal{E}, μ, u) with u not strongly symmetric.

Multiple Environments

Allow EUU to

- model source preference ("home bias");

Multiple Environments

Allow EUU to

- model source preference ("home bias");
- match Ellsberg-type evidence.

Multiple Environments

Allow EUU to

- model source preference ("home bias");
- match Ellsberg-type evidence.
- address Allais-type evidence.

Multiple Environments: Some Properties

- Every EUU has every source.
- The prior alone determines if $\mathcal{F}_{\mathcal{C}}$ is an environment for (\mathcal{E}, μ, u)
- Risk attitude depends u.
- One environment for the the $\operatorname{EUU}(\mathcal{E}, \mu, u)$ is $\mathcal{F}_{\mathcal{E}}$, the Ideal environment.
- Every EUU is an expected utility maximizer in its ideal environment.

$$
U(f)=\int u(f(\omega), f(\omega)) d \mu
$$

Multiple Environments: Some Properties

- Every EUU has every source.
- The prior alone determines if $\mathcal{F}_{\mathcal{C}}$ is an environment for (\mathcal{E}, μ, u)
- Risk attitude depends u.
- One environment for the the $\operatorname{EUU}(\mathcal{E}, \mu, u)$ is $\mathcal{F}_{\mathcal{E}}$, the Ideal environment.
- Every EUU is an expected utility maximizer in its ideal environment.

$$
U(f)=\int u(f(\omega), f(\omega)) d \mu
$$

- In other environments, the $\operatorname{EUU}(\mathcal{E}, \mu, u)$ is a nonexpected utility maximizer

Regular Environments and Lottery Preferences for EUU

Proposition 2: For any interval utility u, there exists a sequence of lottery preferences V_{n}^{u} and for any regular environment $\mathcal{F}_{\mathcal{C}}$ of (\mathcal{E}, μ), there exists a sequence $a_{n} \geq 0, \sum a_{n}=1$ such that

$$
U(f)=V\left(G^{f}\right)=\sum_{n} a_{n} V_{n}^{u}\left(G^{f}\right)
$$

represents (\mathcal{E}, μ, u).

Regular Environments and Lottery Preferences for EUU

Proposition 2: For any interval utility u, there exists a sequence of lottery preferences V_{n}^{u} and for any regular environment $\mathcal{F}_{\mathcal{C}}$ of (\mathcal{E}, μ), there exists a sequence $a_{n} \geq 0, \sum a_{n}=1$ such that

$$
U(f)=V\left(G^{f}\right)=\sum_{n} a_{n} V_{n}^{u}\left(G^{f}\right)
$$

represents (\mathcal{E}, μ, u). Furthermore, for any such sequence a_{n} and (\mathcal{E}, μ), there exists a regular environment $\mathcal{F}_{\mathcal{C}}$ such that

$$
U(f)=\sum_{n} a_{n} V_{n}\left(G^{f}\right)
$$

for all $f \in \mathcal{F}_{\mathcal{C}}$.

Allais and Uncertainty Aversion

Allais Paradox:

$$
V(100)>V(150,4 / 5 ; 0,1 / 5)
$$

but
$V(100,2 / 5 ; 0,3 / 5)<V(150,1 / 2 ; 0,1 / 2)$

Allais Reversals

Definition: A lottery preference V is prone to Allais-reversals if there is an environment γ so that we can find

- a lottery F
- prizes x, y where x is weakly worse than all other prizes in the support of F
- $\alpha \in(0,1)$

Allais Reversals

Definition: A lottery preference V is prone to Allais-reversals if there is an environment γ so that we can find

- a lottery F
- prizes x, y where x is weakly worse than all other prizes in the support of F
- $\alpha \in(0,1)$
so that we have
- $V(y)>V(F)$

Allais Reversals

Definition: A lottery preference V is prone to Allais-reversals if there is an environment γ so that we can find

- a lottery F
- prizes x, y where x is weakly worse than all other prizes in the support of F
- $\alpha \in(0,1)$
so that we have
- $V(y)>V(F)$
- $V(\alpha y+(1-\alpha) x)<V(\alpha F+(1-\alpha) x)$.

Rank Dependent EU

The following lottery preferences generate Allais Reversals:

Rank Dependent EU

The following lottery preferences generate Allais Reversals:
PTF: $\gamma:[0,1] \rightarrow[0,1]$ is a probability transformation function if it is continuous, onto and strictly increasing.

Rank Dependent EU

The following lottery preferences generate Allais Reversals:
PTF: $\gamma:[0,1] \rightarrow[0,1]$ is a probability transformation function if it is continuous, onto and strictly increasing.

RDEU: The lottery preference $V: \mathcal{L} \rightarrow R$ is an RDEU if

$$
V(F)=\int v(x) d \gamma(F(x))
$$

for some PTF γ.

Rank Dependent EU

The following lottery preferences generate Allais Reversals:
PTF: $\gamma:[0,1] \rightarrow[0,1]$ is a probability transformation function if it is continuous, onto and strictly increasing.
RDEU: The lottery preference $V: \mathcal{L} \rightarrow R$ is an RDEU if

$$
V(F)=\int v(x) d \gamma(F(x))
$$

for some PTF γ.
PTF's that have an inverted S-shape are (a) consistent with Allais reversals and (b) have some supporting experimental evidence (Starmer (2000)).

Polynomial Utility and Special Cases

Recall: A sequence $a_{n} \geq 0$ such that $\sum_{n} a_{n}=1$ characterizes a regular environment and in each environment $\left\{a_{n}\right\}$ the EUU with interval utility u has lottery preference

$$
U(f)=\sum_{n} a_{n} V_{n}^{U}\left(G^{f}\right)
$$

We call the sequence a_{n} the uncertainty measure of the corresponding environment.

- $V_{1}^{u}(G)=\int u(x, x) d G(x)$. Hence V_{1}^{u} is an EU preference. The environment $a_{1}=1$ is an EU environment.
- $V_{1}^{u}(G)=\int u(x, x) d G(x)$. Hence V_{1}^{u} is an EU preference. The environment $a_{1}=1$ is an EU environment.
- $V_{n}^{u}(G)=\int v(x) d(G(x))^{n}$ whenever $u(x, y)=v(x)$ for some v. Hence, for such u, every environment is a RDEU environment
- $V_{1}^{u}(G)=\int u(x, x) d G(x)$. Hence V_{1}^{u} is an EU preference. The environment $a_{1}=1$ is an EU environment.
- $V_{n}^{u}(G)=\int v(x) d(G(x))^{n}$ whenever $u(x, y)=v(x)$ for some v. Hence, for such u, every environment is a RDEU environment
- More generally, whenever $u(x, y)=\alpha v(x)+(1-\alpha) v(y)$ for some v, every environment is an RDEU environment. This RDEU has the desired inverted S-shape whenever $\left\{a_{n}\right\}$ is sufficiently uncertain.
- $V_{1}^{u}(G)=\int u(x, x) d G(x)$. Hence V_{1}^{u} is an EU preference. The environment $a_{1}=1$ is an EU environment.
- $V_{n}^{u}(G)=\int v(x) d(G(x))^{n}$ whenever $u(x, y)=v(x)$ for some v. Hence, for such u, every environment is a RDEU environment
- More generally, whenever $u(x, y)=\alpha v(x)+(1-\alpha) v(y)$ for some v, every environment is an RDEU environment. This RDEU has the desired inverted S-shape whenever $\left\{a_{n}\right\}$ is sufficiently uncertain.
- V_{2}^{u} is the quadratic utility of Machina (1982), Chew, Epstein and Segal (1991) (with utility index u). Hence, $a_{2}=1$ is the quadratic utility environment.

Strong Uncertainty Aversion

An EUU is risk averse in an environment if it dislikes mean preserving spreads.

Strong Uncertainty Aversion

An EUU is risk averse in an environment if it dislikes mean preserving spreads.

An EUU is strongly uncertainty averse if it is risk averse in every environment.

Strong Uncertainty Aversion

An EUU is risk averse in an environment if it dislikes mean preserving spreads.

An EUU is strongly uncertainty averse if it is risk averse in every environment.

- u is maximally pessimistic if there exist some v such that $u(x, y)=v(x)$ for all x, y.

Proposition 3: Let (\mathcal{E}, μ, u) be an EUU. Then, the following conditions are equivalent
(1) The EUU (\mathcal{E}, μ, u) is strongly uncertainty averse;
(2) u is maximally pessimistic and concave.

Uncertainty of Environments

Definition: The environment $\mathcal{F}_{\mathcal{A}}$ is more uncertain than the environment $\mathcal{F}_{\mathcal{B}}$ if every strongly uncertainty averse EUU prefers $f \in \mathcal{F}_{\mathcal{A}}$ to $g \in \mathcal{F}_{\mathcal{B}}$ whenever f and g yield the same lottery.

Proposition 4: $\mathcal{F}_{\mathcal{B}}$ more uncertain than $\mathcal{F}_{\mathcal{A}}$ if and only if

$$
\sum_{n} b_{n} t^{n} \leq \sum_{n} a_{n} t^{n}
$$

for all $t \in[0,1]$, where $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are the uncertainty measures of $\mathcal{F}_{\mathcal{A}}$ and $\mathcal{F}_{\mathcal{B}}$ respectively.

- We write $\mathcal{F}_{\mathcal{B}} \succeq_{m u} \mathcal{F}_{\mathcal{A}}$ (or equivalently $\left\{b_{n}\right\} \succeq_{m u}\left\{a_{n}\right\}$) to mean " $\mathcal{F}_{\mathcal{B}}$ is more uncertain than $\mathcal{F}_{\mathcal{A}}$."
- $b_{n+1}=1$ and $a_{n}=1$ implies $\left\{b_{n}\right\} \succeq_{m u}\left\{a_{n}\right\}$.
- Not all environments can be ranked. For example, $a_{2}=1$ and $a_{1}=a_{4}=1 / 2$ cannot be ranked.

Risk Loving under Extreme Uncertainty:

The EUU is risk loving under extreme uncertainty if, for sufficiently uncertain environments, there are lotteries that the DM prefers to their expected value.

Definition u displays risk loving under extreme uncertainty if there exists an environment $\mathcal{F}_{\mathcal{A}}$ and a lottery F such that $\mathcal{F}_{\mathcal{B}} \succeq_{m u} \mathcal{F}_{\mathcal{A}}$ implies $U(f)>U(z)$ whenever $f \in \mathcal{F}_{\mathcal{B}}, G^{f}=F$ and z is the mean of F.

Proposition 5: The following conditions are equivalent

- u is not maximally pessimistic;

Proposition 5: The following conditions are equivalent

- u is not maximally pessimistic;
- u is prone to Allais-reversals;

Proposition 5: The following conditions are equivalent

- u is not maximally pessimistic;
- u is prone to Allais-reversals;
- u displays risk loving under extreme uncertainty.

Ellsberg One Urn Example

3 balls, red, blue or green. 1 ball is red. Intuitively, $\{r\}$ and $\{b, g\}$ have unambiguous probability $1 / 3$ and $2 / 3$. But, $\{g\}$ and $\{r, b\}$ are ambiguous.
What would it mean for a model (an EUU model) to explain or rationalize the Ellsberg One-Urn Example?

- N is a nonempty finite set; \mathcal{N} is the set of subsets of N.
- P be the set of all probabilities on \mathcal{N} and $\iota \in P$.
- $\mathcal{M} \subset \mathcal{N}$ is a collection of sets (a λ-system).

The collection (N, \mathcal{M}, ι) is an urn experiment if for all $K \in \mathcal{N} \backslash \mathcal{M}$, there exist $p \in P$ such that $p(M)=\iota(M)$ for all $M \in \mathcal{M}$ and $p(K) \neq \iota(K)$.
Given any prior (\mathcal{E}, μ), a collection of subsets \mathcal{C}_{o} of Ω is unambiguous if there exists a source \mathcal{A} such that $\mathcal{C}_{o} \subset \mathcal{A}$. The event $A \subset \Omega$ is ambiguous wrt \mathcal{C}_{0} if there exists no source \mathcal{B} such that $\mathcal{C}_{O} \cup\{A\} \subset \mathcal{B}$.

Ellsberg One Urn Example is an Urn Example

$$
\begin{aligned}
& \mathcal{M}=\{\{r\},\{b, g\}\} \\
& \iota \text { is any probability such that } \iota\{r\}=1 / 3 \text { and } \iota\{b, g\}=2 / 3
\end{aligned}
$$

Zhang's (1997) 4 color urn

2 balls: red, blue, green, or yellow.
1 balls is red or blue
1 ball is red or green.

Zhang's (1997) 4 color urn

2 balls: red, blue, green, or yellow.
1 balls is red or blue
1 ball is red or green.
Intuitively unambiguous events are $\{r, b\},\{g, y\},\{r, g\},\{b, y\}$ and each has $\iota=1 / 2$.

Rationalizing Urn Experiments

The prior (\mathcal{E}, μ) rationalizes the urn experiment (N, μ, ι) if there exists an onto mapping $T: \Omega \rightarrow N$ such that $\mathcal{C}_{0}:=\left\{T^{-1}(M) \mid M \in \mathcal{M}\right\}$ is unambiguous and every $T^{-1}(L)$ for $L \in \mathcal{N} \backslash \mathcal{M}$ is ambiguous wrt \mathcal{C}_{o}.

Proposition 6: Every prior rationalizes every urn experiment.

Conclusion

Expected Uncertain Utility theory is a simple extension of Subjective
Expected Utility theory.

Conclusion

Expected Uncertain Utility theory is a simple extension of Subjective
Expected Utility theory.
EUU provides:

- a model of source preference.

Conclusion

Expected Uncertain Utility theory is a simple extension of Subjective
Expected Utility theory.
EUU provides:

- a model of source preference.
- a unified treatment of Allais and Ellsberg style experiments.

Conclusion

Expected Uncertain Utility theory is a simple extension of Subjective
Expected Utility theory.
EUU provides:

- a model of source preference.
- a unified treatment of Allais and Ellsberg style experiments.
- separation of uncertainty attitude and uncertainty perception.

Conclusion

Expected Uncertain Utility theory is a simple extension of Subjective

Expected Utility theory.
EUU provides:

- a model of source preference.
- a unified treatment of Allais and Ellsberg style experiments.
- separation of uncertainty attitude and uncertainty perception.

EUU has:

- significant overlap with many existing models (Choquet EU, Maxmin EU, α-Maxmin EU.)

Conclusion

Expected Uncertain Utility theory is a simple extension of Subjective

Expected Utility theory.
EUU provides:

- a model of source preference.
- a unified treatment of Allais and Ellsberg style experiments.
- separation of uncertainty attitude and uncertainty perception.

EUU has:

- significant overlap with many existing models (Choquet EU, Maxmin EU, α-Maxmin EU.)
- few behavioral restrictions; more of a framework than a "theory."

